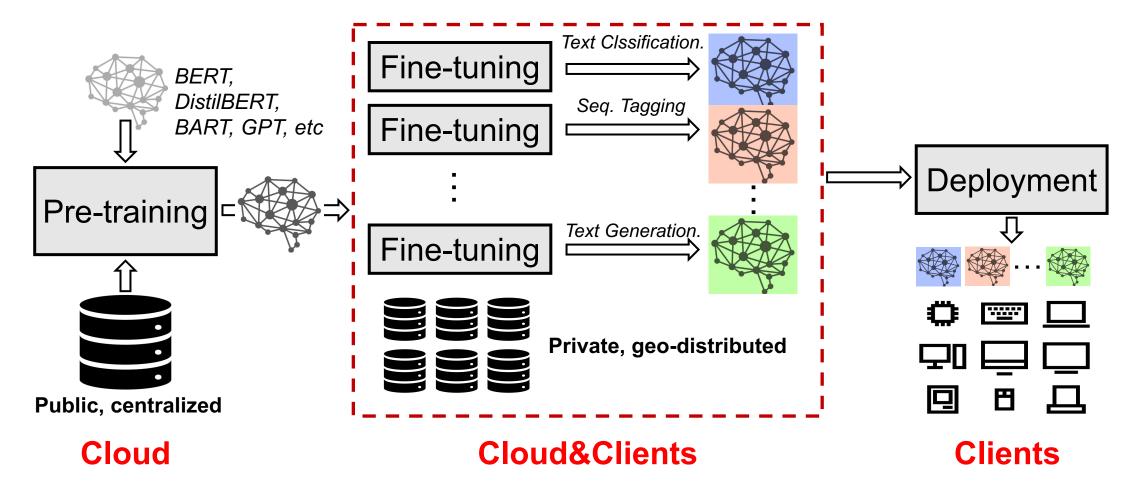


Dongqi Cai¹, Shangguang Wang¹, Yaozong Wu¹, Felix Xiaozhu Lin², Mengwei Xu¹

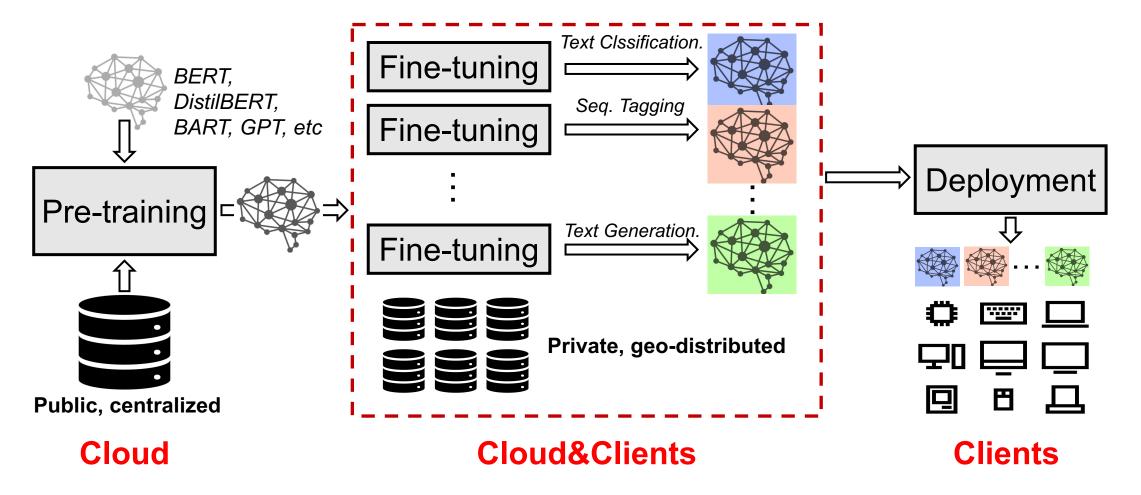
1 Beiyou Shenzhen Institute2 University of Virginia

FedNLP: focus of our work

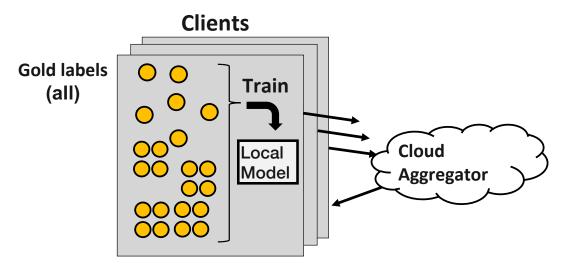


Where is the training data coming from?

FedNLP: focus of our work

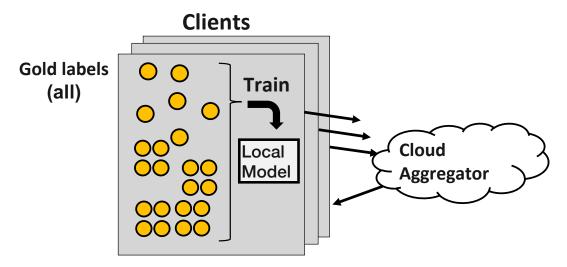


Background: Federated Few-shot Learning (FedFSL)



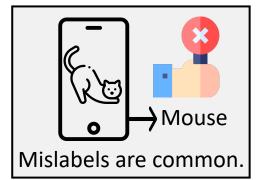
(a) Classic FL: rely on abundant labels

Background: Federated Few-shot Learning (FedFSL)

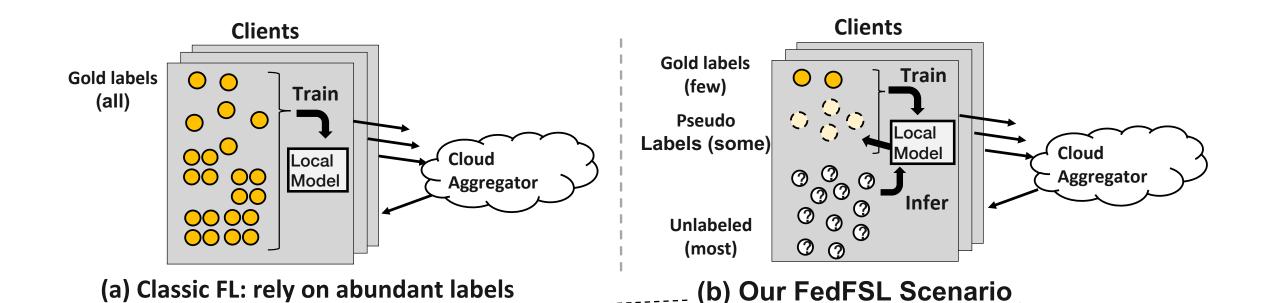


(a) Classic FL: rely on abundant labels

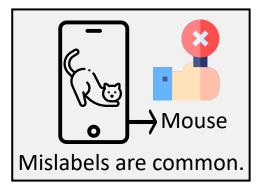
Well-curated labeled data is scarce on mobile devices



Background: Federated Few-shot Learning (FedFSL)



Well-curated labeled data is scarce on mobile devices



Background: Pseudo labeling

The rational behind pseudo labeling:

"Training with pseudo labels encourages the model to learn a decision boundary that lies in a region where the example density is lower."

For example,

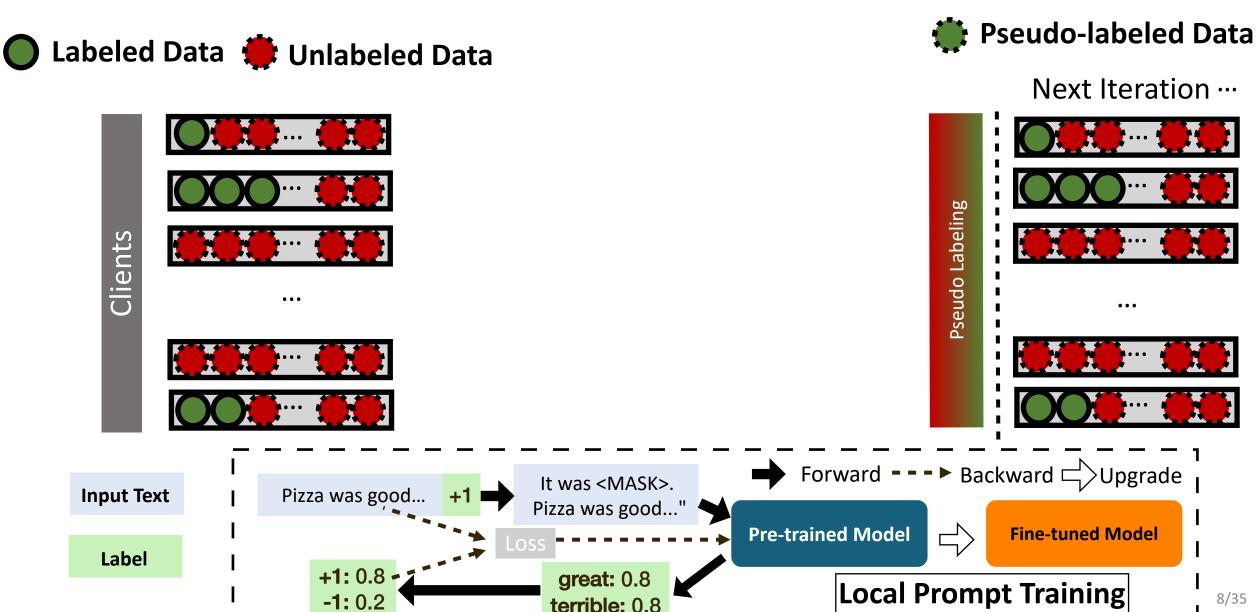
"great":0.9, "bad":0.1 rather than "great":0.6, "bad":0.4

Low class overlap → Low entropy

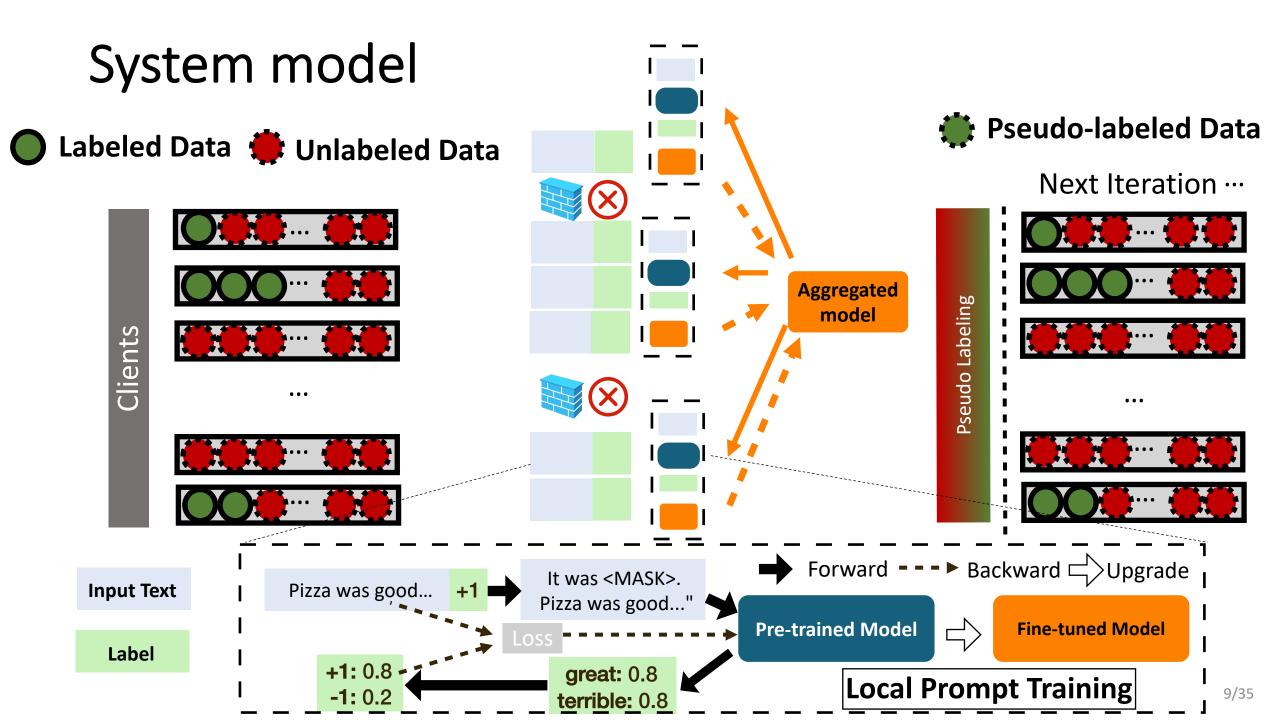
Background: Prompt learning

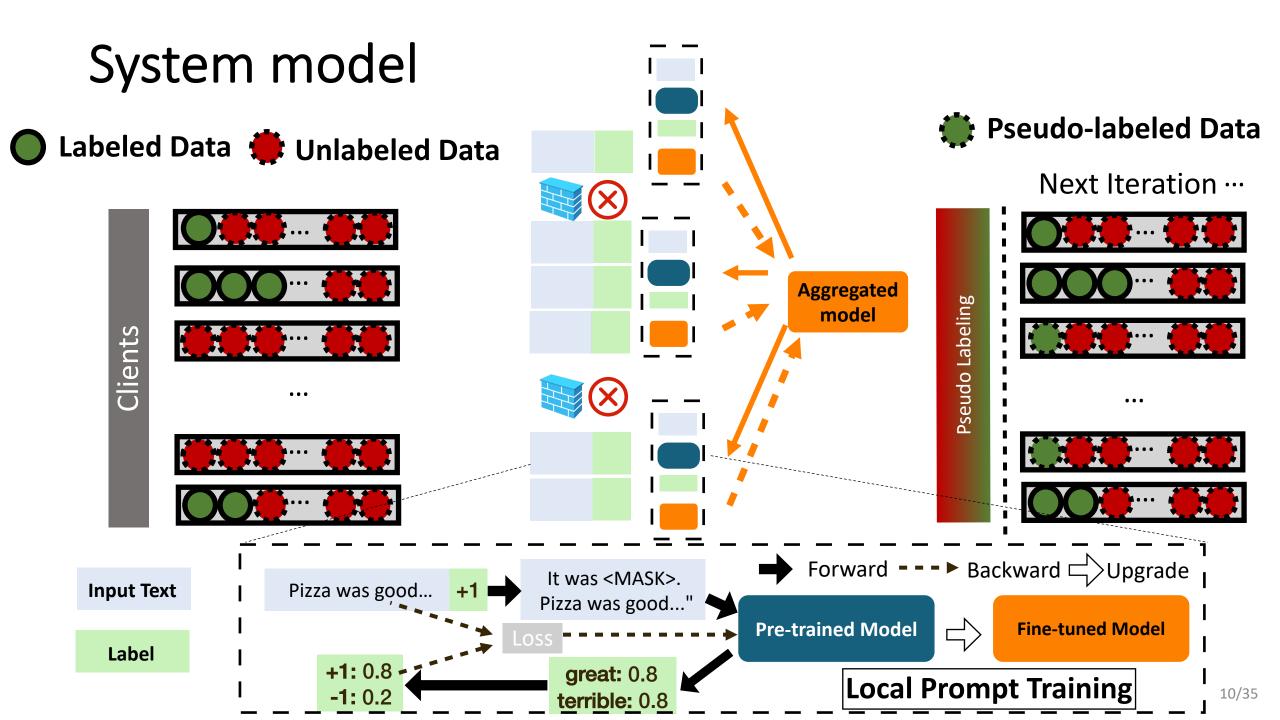
- T1 (label = +1): "Most delicious pizza l've ever had."
- T2 (label = -1): "You can get better sushi for half the price."
- T3 (label = ?): Pizza was good. Not worth the price.

System model



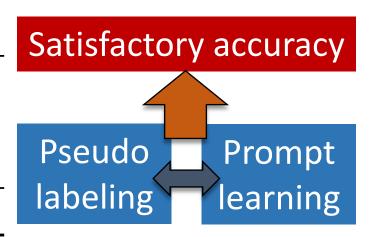
terrible: 0.8





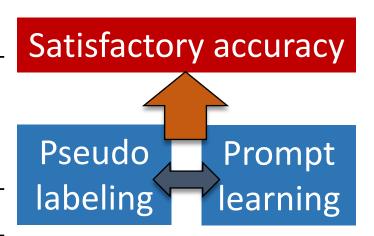
Preliminary: FedFSL performance

Dataset	Full-set (oracle)	Vanilla- FedFSL	Prompt- Only	Pseudo- Only	Both (Ours)		
AGNEWS (skewed)	93.0	64.8±3.1	68.4±2.4	67.5±1.3	90.2 \pm 0.5		
MNLI (skewed)	85.0	37.7 ± 5.6	42.4 ± 5.8	42.7 ± 6.3	77.4 ± 1.2		
YAH00 (skewed)	78.0	24.4 ± 10.3	41.8 ± 4.3	31.0 ± 2.0	66.9 ±1.1		
YELP-F (skewed)	70.0	38.3±8.8	51.2±1.8	45.7 ± 4.4	58.2 ±2.4		
YELP-F (uniform)	70.0	54.0±0.1	58.1±1.5	57.0±2.2	61.9 ±0.7		



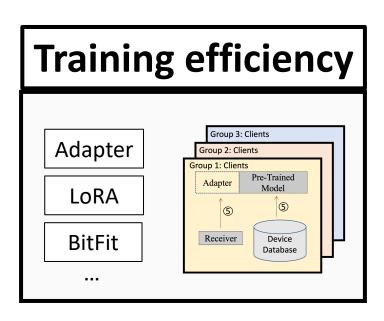
Preliminary: FedFSL performance

Dataset	Full-set	Vanilla-	Prompt-	Pseudo-	Both	
	(oracle)	FedFSL	Only	Only	(Ours)	
AGNEWS (skewed) MNLI (skewed) YAHOO (skewed) YELP-F (skewed)	93.0	64.8±3.1	68.4±2.4	67.5±1.3	90.2±0.5	
	85.0	37.7±5.6	42.4±5.8	42.7±6.3	77.4±1.2	
	78.0	24.4±10.3	41.8±4.3	31.0±2.0	66.9±1.1	
	70.0	38.3±8.8	51.2±1.8	45.7±4.4	58.2±2.4	
YELP-F (uniform)	70.0	54.0±0.1	58.1±1.5	57.0±2.2	61.9 ±0.7	



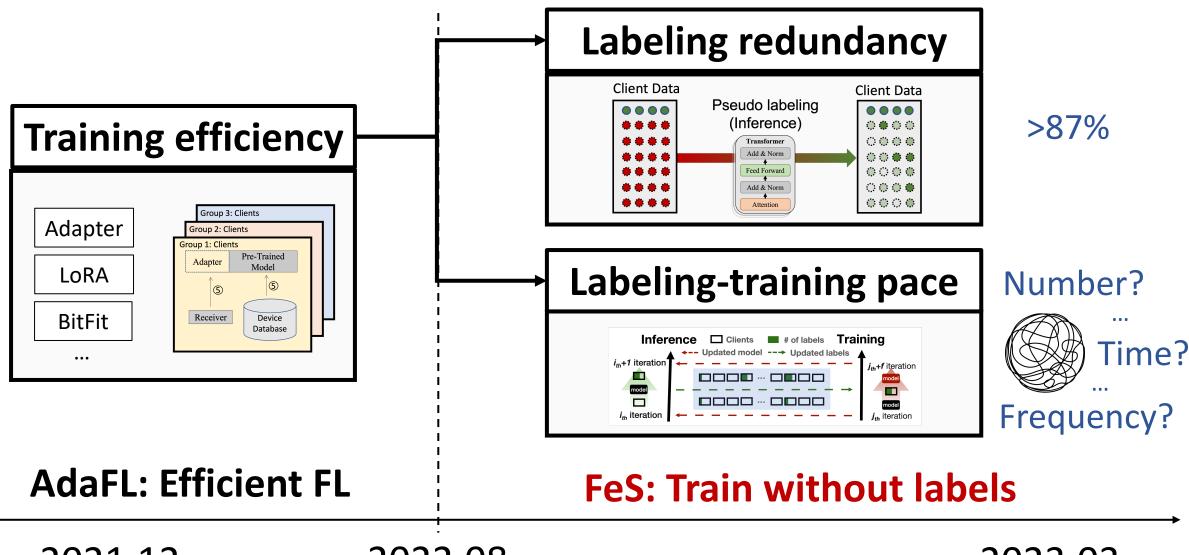
How about the system cost?

Challenge: FedFSL system cost



AdaFL: Efficient FL

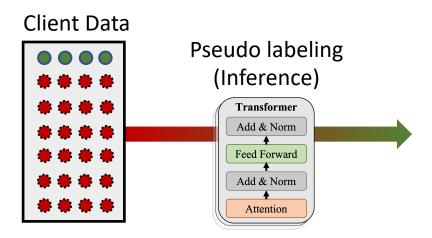
Challenge: FedFSL system cost



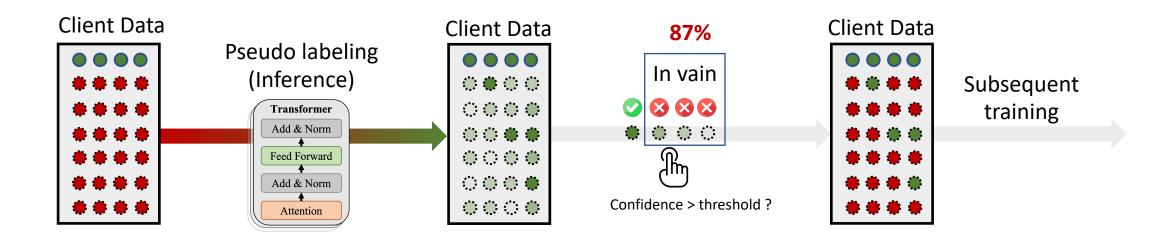
2021.12 2022.08

2023.03

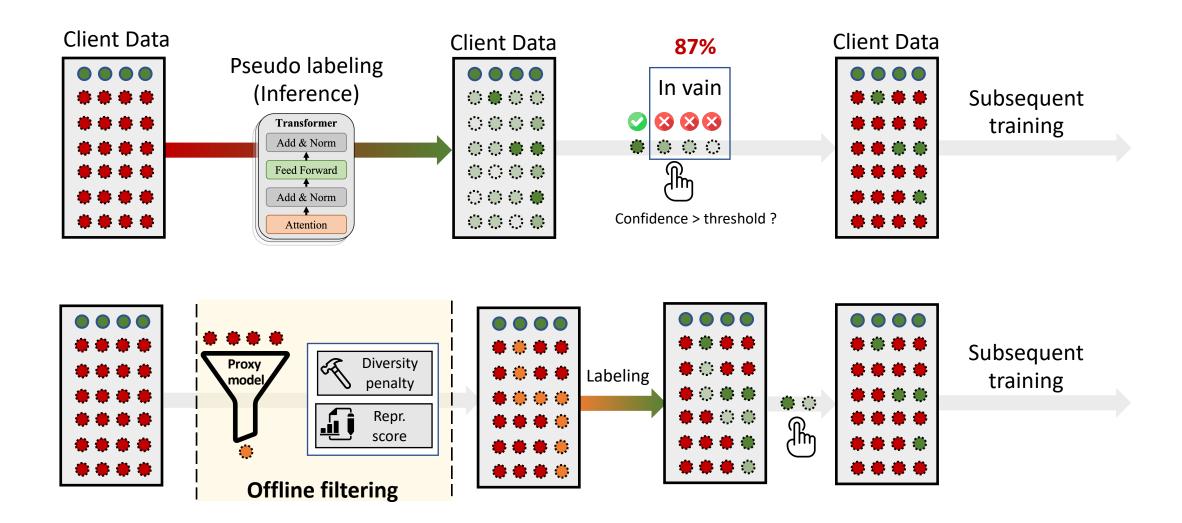
Design 1: Representational Filtering

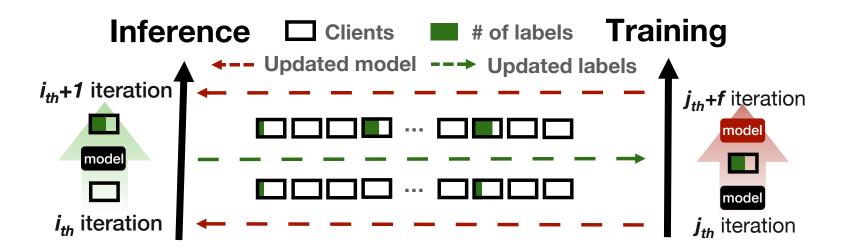


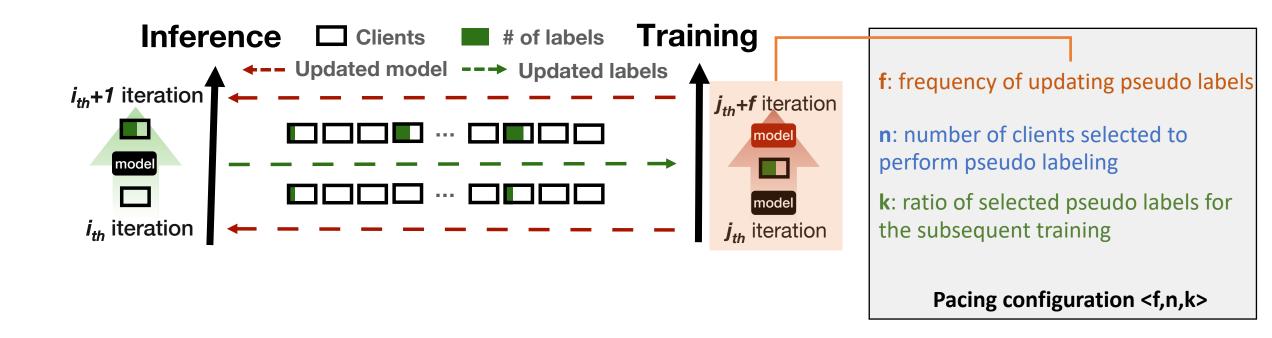
Design: Representational Filtering

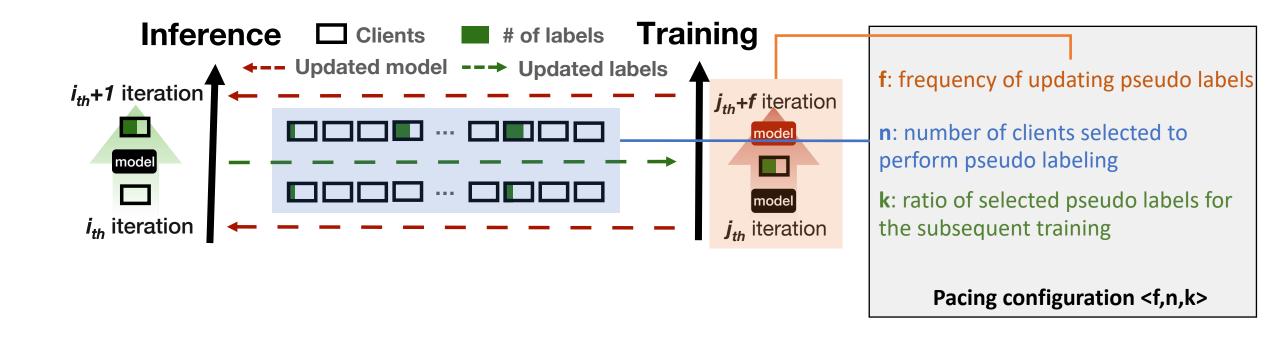


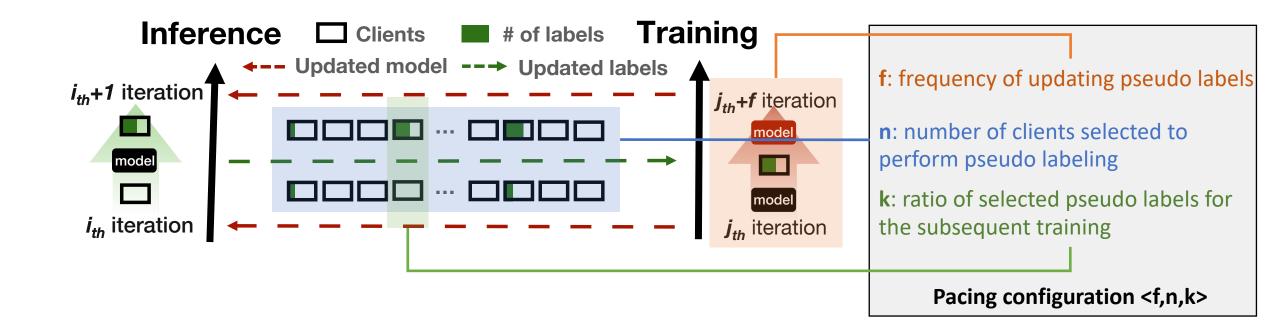
Design: Representational Filtering

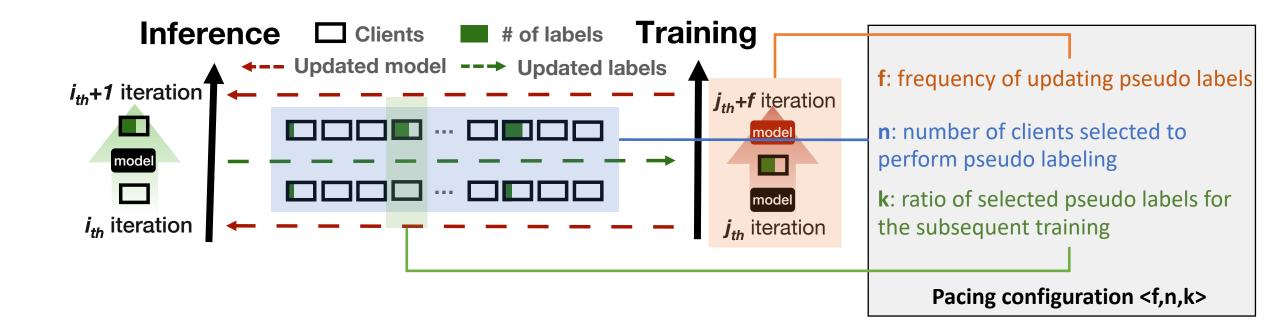




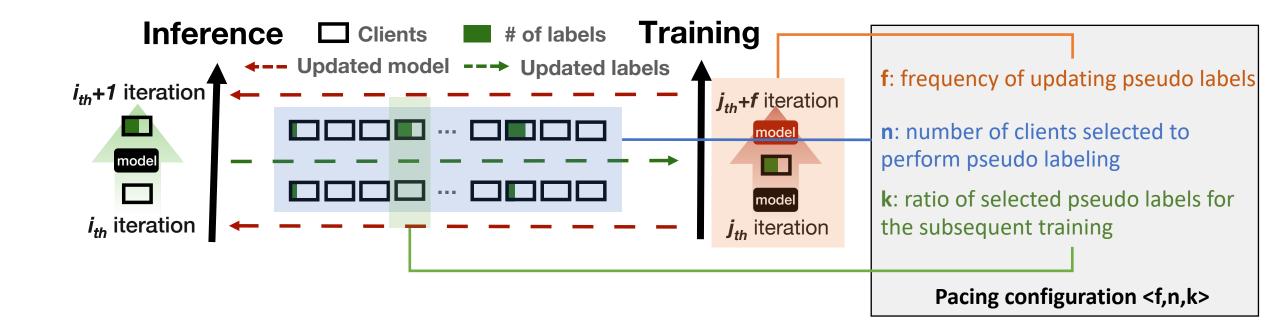








• Progressively speed up the pseudo labeling speed, i.e., adding more pseudo labels at a higher frequency.

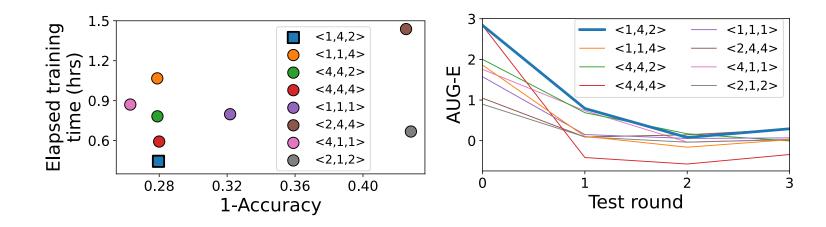


- Progressively speed up the pseudo labeling speed, i.e., adding more pseudo labels at a higher frequency.
- Progressive upgrading is only a coarse-grained plan, how to control the pace more concisely?

Augment efficiency (AUG-E):

measure the gradient of the time-to-accuracy curve to search for an effective configuration with low cost

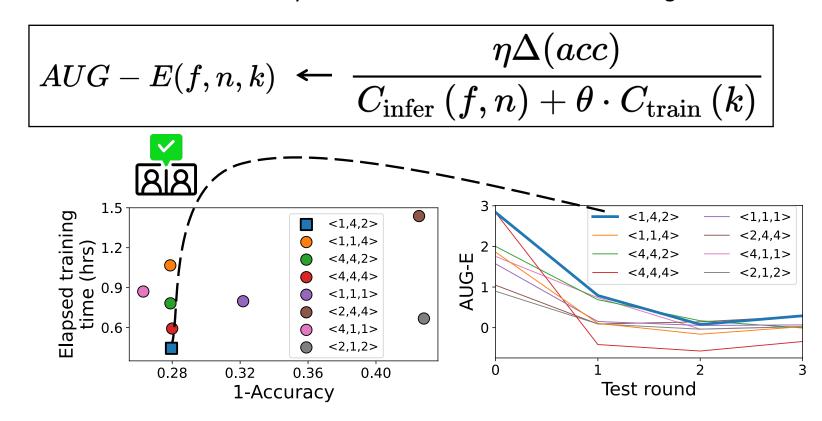
$$AUG - E(f, n, k) \leftarrow \frac{\eta \Delta(acc)}{C_{\text{infer}}(f, n) + \theta \cdot C_{\text{train}}(k)}$$



Our system selects a configuration with **best AUG-E** from a candidate list (hand-picked through extensive offline experiments) for future pseudo labeling.

Augment efficiency (AUG-E):

measure the gradient of the time-to-accuracy curve to search for an effective configuration with low cost



Our system selects a configuration with **best AUG-E** from a candidate list (hand-picked through extensive offline experiments) for future pseudo labeling.

Evaluation: Setup

Implementation

- FedNLP^[1]
- PET^[2]

64 labels in total instead of per client

Setups

- 2 devices (TX2, RPI 4B)
- 2 models (RoBERTa-base & large)
- 4 datasets

Baselines

- 1. Vanilla Fine-Tuning (FedCLS)
- 2. Vanilla Few-shot Tuning (FedFSL)
- Vanilla Few-shot Tuning + Bias-tuning (FedFSL-BIAS)

Dataset	AGNEWS [108]	MNLI [89]	YAH00 [108]	YELP-F [108]	
# Training	120k	392.7k	1.4M	650k	
# Test	7.6k	9.8k	60k	50k	
# Clients	100	1000	1000	1000	
# Labels	64	64	64	64	
Distribution Skewed		Uniform	Skewed	Skewed	
Prompt	a b	a ?, b	Category: a b	It was a	

Setup	Lal	beling	Training					
Setup	Pacing Optimization		Method	Optimization				
FedCLS	/	/	Head-based	/				
FedFSL	Static	/	Prompt-based	/				
FedFSL-BIAS	Static	/	Prompt-based	Bias-only tuning				
FeS (Ours)	Curriculum	Filtering	Prompt-based	Depth/Capacity				
res (ours)	(§3.1)	(§3.2)	(§2.2)	Co-planning (§3.3)				

^[1] Yuchen Lin B, He C, Zeng Z, et al. FedNLP: Benchmarking Federated Learning Methods for Natural Language Processing Tasks[J]. Findings of NAACL, 2022.

^[2] Schick T, Schütze H. Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021: 255-269.

Evaluation: End-to-end Performance

• Our system significantly speeds up model convergence at high accuracy.

Conv	ime-to-acc (hr	.)	т.			YAHOO			YELP-F							
D. C. COIIV.		Conv.	11	me-to-acc	(hr)	Conv.	7	Γime-to	me-to-acc (hr)		Conv	Time-to-acc (hr)				
Perf. Acc.	K2 RF	PI Acc.	TX2	2	RPI	Acc.	T	X2	RF	PI	Conv. Acc.	TΣ	X2	R	PI	
acc1	acc2 acc1	acc2	acc1	acc2 acc	acc2	Acc.	acc1	acc2	acc1	acc2	Acc.	acc1	acc2	acc1	acc2	
FedCSL 27.9% X	X X	X 37.3%	X	X X	X	34.6%	X	X	X	X	35.7%	Χ	X	X	X	
FedFSL 92.5% 3.3	3.3 50.0	50.0 74.1%	9.2	X 137.	5 X	84.3%	8.3	X	125.0	X	75.3%	2.1	X	31.3	V	A .
FedFSL-BIAS 92.5% 1.7	1.7 25.0	25.0 88.1%	0.5	11.7 7.5	175.0	85.9%	3.3	5.3	50.0	80.0	79.4%	0.2	2.1	2.5	10.4	1 260× 1 68.0%
Ours 95.9% 0.4	0.4 5.5	5.5 92.2%	0.2	0.8 2.5	12.5	88.5%	0.3	0.7	5.0	10.0	86.8%	0.1	0.5	1.3	7.5	V

Table 1: The final convergence accuracy ("Conv. Acc.") and the elapsed training time ("Time-to-acc") to reach different relative accuracy. "acc1"/"acc2" are the final convergence accuracy of FedFSL/FedFSL-BIAS, respectively. "X" means the accuracy cannot be achieved.

Evaluation: Key deign

Our key designs contribute to the results significantly.

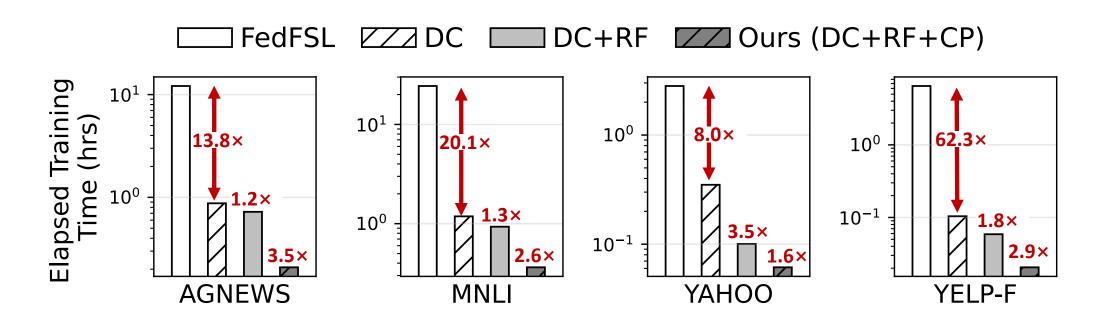


Fig. 1: Model convergence delays with and without Our system's key designs, showing their significance. **DC**: training depth/capacity co-planning; **RF**: representative filtering; **CP**: curriculum pacing.

Evaluation: System Cost

Our system is resource-efficient.

- It saves up to 3000.0× network traffic. (Fig. 1)
- It reduces up to 41.2× energy consumption. (Fig. 2)
- It reduces the **memory usage** by 4.5×. (Fig. 3)

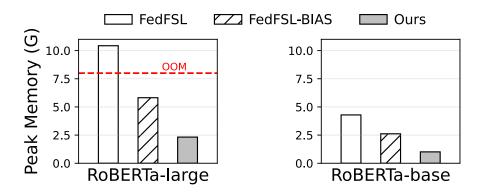


Fig. 3: Memory footprint of on-device training.

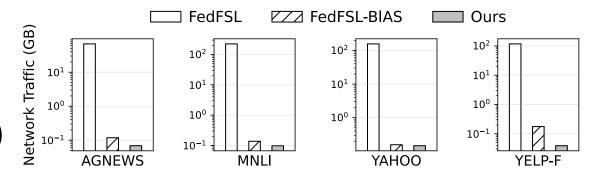


Fig. 1: The total network traffic of all clients.

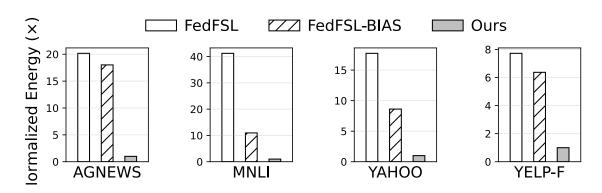


Fig. 2: The total energy consumption of all clients, normalized to that of ours

Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

Contact: cdq@bupt.edu.cn

Conclusion

• Our system is a FedFSL framework that enables practical few-shot NLP fine-tuning on federated mobile devices.

Code: https://github.com/UbiquitousLearning/FeS

Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

Contact: cdq@bupt.edu.cn

Conclusion

- Our system is a FedFSL framework that enables practical few-shot NLP fine-tuning on federated mobile devices.
- It incorporates pseudo labeling and prompt learning to achieve usable accuracy with only tens of data labels.

Code: https://github.com/UbiquitousLearning/FeS

Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

Contact: cdq@bupt.edu.cn

Conclusion

- Our system is a FedFSL framework that enables practical few-shot NLP fine-tuning on federated mobile devices.
- It incorporates pseudo labeling and prompt learning to achieve usable accuracy with only tens of data labels.
- At system aspect, it proposes three novel techniques, i.e., early filtering unlabeled data, reducing the tuning depth/capacity, and curriculum orchestrate them to address the unique challenge of huge resource cost raised by its algorithmic.

Code: https://github.com/UbiquitousLearning/FeS

Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

Contact: cdq@bupt.edu.cn

Conclusion

- Our system is a FedFSL framework that enables practical few-shot NLP fine-tuning on federated mobile devices.
- It incorporates pseudo labeling and prompt learning to achieve usable accuracy with only tens of data labels.
- At system aspect, it proposes three novel techniques, i.e., early filtering unlabeled data, reducing the tuning depth/capacity, and curriculum orchestrate them to address the unique challenge of huge resource cost raised by its algorithmic.
- Compared to vanilla FedFSL, Our system reduces the training delay, client energy, and network traffic by up to $46.0 \times$, $41.2 \times$ and $3000.0 \times$, respectively.

Code: https://github.com/UbiquitousLearning/FeS

Concluding Remarks by Mengwei

- The recent AI wave (large, foundational, multimodal models) is going to make another Golden Era for mobile computing.
 - Think of Smartphones/IoTs as humans-level assistants
- Two key research directions
 - Making LLMs run fast and learn rapidly on devices (hw-sw-algo. codesign)
 - Building killer apps atop LLMs (agents, searching, AIGC, etc)
- Open to collaboration and debate!
 - Who are we: a junior faculty plus a group of passionate graduate students who believe in LLM as a game changer to mobile research

Generated by Stable Diffusion XL



Appendix for Q&A

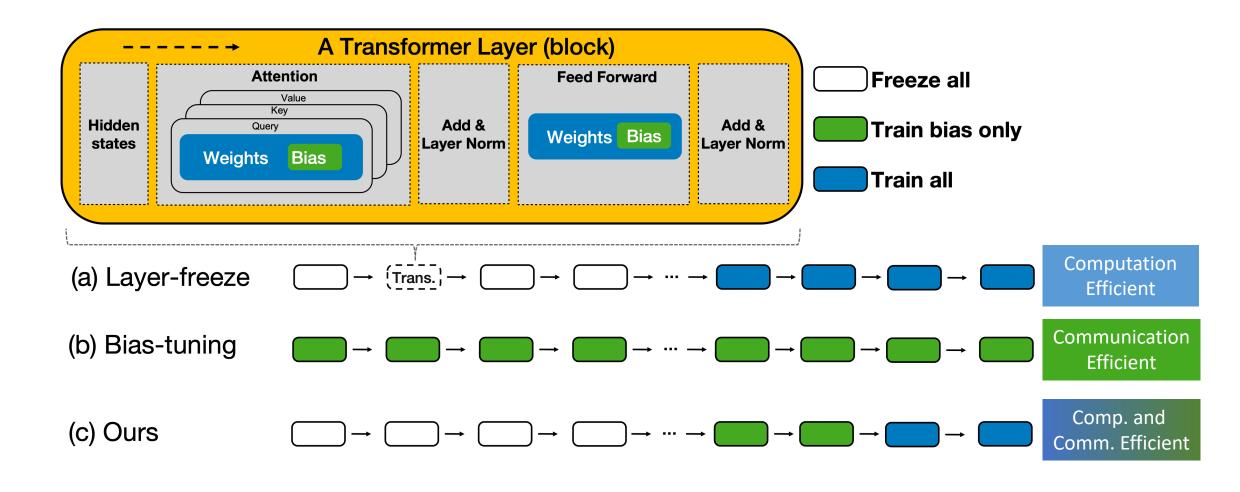
Different parameter-efficient methods

• Adapter is not only for "adapters".

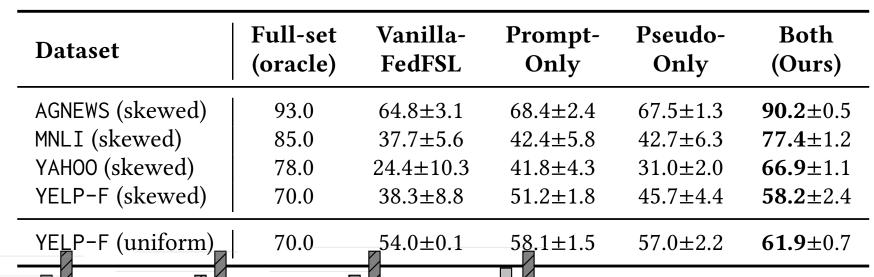
• Parameter-efficient methods are unified (He, ICLR'22).

• Bias-tuning provides the best accuracy-efficiency tradeoff under fewshot learning scenarios (Logan, ACL'22).

Design 2: Training Depth/Capacity Co-planning

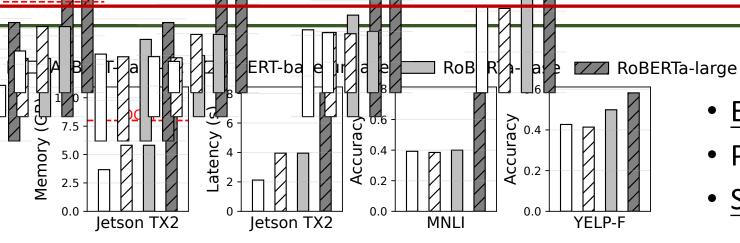


Preliminary: FedFSL performance and cost



Satisfactory accuracy

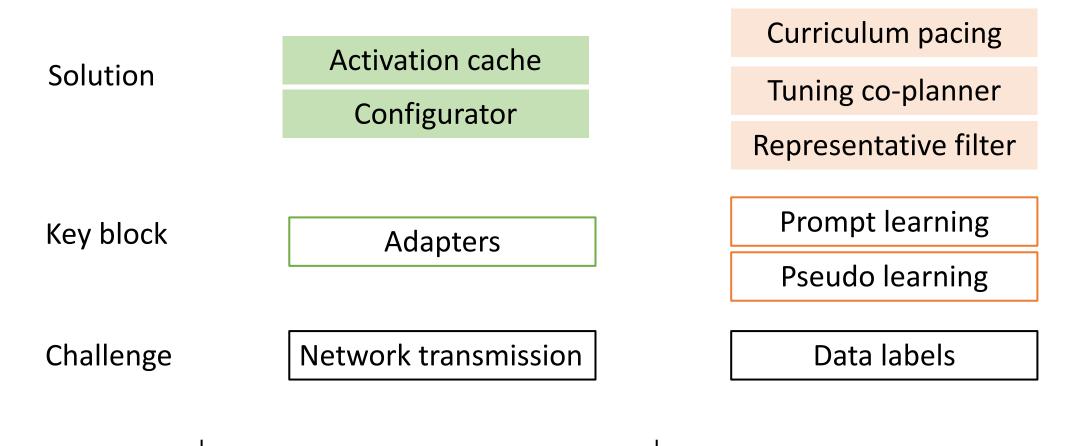
Both pseudo labeling and prompt learning are indispensable.



Huge system cost

- Excessive on-device inference.
- Prompt learning needs <u>large</u> NLP model.
- Sophisticated **orchestration** workflow.

Paths towards practical federated learning



AdaFL: Efficient FL FeS: Few-shot FL 2021.12 2022.08 2023.03