
Efficient Federated Learning
for Modern NLP

Dongqi Cai1, Yaozong Wu1, Shangguang Wang1, Felix Xiaozhu Lin2, Mengwei Xu1

The 29th Annual International Conference
On Mobile Computing And Networking

1 Beiyou Shenzhen Institute
2 University of Virginia

How to understand the meaning of a word?
Natural Language Processing (NLP)

1/30

How to understand the meaning of a word?
Natural Language Processing (NLP)

What sparks modern NLP?
Attention-based Transformer Q&A

Type

Analyze

2/30

How to understand the meaning of a word?
Natural Language Processing (NLP)

How to preserve the privacy of training data?
Federated Learning

What sparks modern NLP?
Attention-based Transformer Q&A

Type

Analyze

3/30

Pre-training

Fine-tuning

…

Fine-tuning
Text Clssification.

Fine-tuning
Seq. Tagging

Text Generation.

Deployment

…

Public, centralized

Private, geo-distributed

BERT, DistilBERT,
BART, GPT, etc

…

Cloud Cloud&Clients Clients

Transformer Models Federated Fine-tuning

Mobile devices

4/30

Pre-training

Fine-tuning

…

Fine-tuning
Text Clssification.

Fine-tuning
Seq. Tagging

Text Generation.

Deployment

…

Public, centralized

Private, geo-distributed

BERT, DistilBERT,
BART, GPT, etc

…

Cloud Cloud&Clients Clients

FedNLP: focus of this work

5/30

Is FedNLP practical on todays’
mobile platforms?

6/30

Observation 1: Transformer-based NLP
models are highly costly.
(a) CV models vs. NLP models (b) FL convegence time (c) Breakdown of FedNLP (d) Layer freezing in FedNLP

Figure 2: The preliminary measurement results of FedNLP. (a) A glance at the complexity of NLP models and traditional
CNNs; (b) End-to-end convergence time of CV and NLP models under FL settings (CV1: “Densenet-121 [34] + CelebA [49]”;
CV2: “Resnet56 [28] + Cifar-100 [39]”; NLP: “BERT [20] + Semeval [29]”). (c) Training time breakdown of FedNLP tasks
on di�erent hardware. Model: BERT; batch size: 4. (d) The performance of layer freezing. Model: DistilBERT [64]. Dataset:
ONTONOTES [57]; batch size: 4.

Figure 3: The structure of adapters used.

3 DESIGN
3.1 Plugable Adapters
Transformer adapters For e�cient FedNLP, we retro�t adapters
– a recently proposed technique for both CV and NLP tasks to
achieve parameter e�ciency in machine learning [32]. The initial
goal of adapters is to reduce the tunable parameters especially in
continuous learning [18] scenario where unlimited number of new
tasks might emerge. However, it has been seldomly used to tackle
system challenges like network cost and convergence speed. As far
as we know, AutoFedNLP is the �rst to apply adapters to federated
NLP tasks and demonstrate its e�ciency under a system context.

The key idea of adapter is to freeze the whole original model
but insert a few small modules into di�erent locations inside it.
Figure 3 shows the bottleneck architecture of our adapters and
how it’s applied to the transformer. Recall that each transformer
layer contains two primary sub-layers: an attention layer and a
feedforward layer, followed immediately by layer normalization. A
residual connection is applied across each of the sub-layers. The
adapter approach inserts small modules (adapters) between trans-
former layers. The adapter layer generally uses a down-projection
with]down 2 R=⇥< to project the input ⌘ to a lower-dimensional
space speci�ed by bottleneck dimension<, followed by a nonlinear
activation function 5 (·), and a up-projection with]up 2 R<⇥= .
These adapters are surrounded by a residual connection, leading to
a �nal form as:

h h + 5 (h]down)]up .

Considering that the same adapter inserted into the feed-forward
network always outperforms its attention counterpart [27], we
follow prior work [54], a more e�cient adapter variant to only

insert one adapter module after the second sub-layer, i.e., the feed-
forward network "add & layer norm" sublayer. The output of the
adapter is then passed directly into the next transformer layer.

The rationales behind adaptersWhy adapter is able to achieve
comparable accuracy with much fewer parameters than freezing
the bottom transformer layers without revising the model struc-
ture? We reason it with two insights from our experiments and
related literature [54, 63].

First, adapters allow modifying a model’s hidden state at a low
cost. By keeping the whole original model as it is, adapters canmaxi-
mally preserve the knowledge learned from the pre-training dataset.
The pluggable adapters are only used to encode task-speci�c rep-
resentations in intermediate layers of the shared model. With a
bottleneck architecture, an adapter contains much fewer parame-
ters than a whole transformer block, presuming that adapters can
be inserted into “deeper” transformer blocks. While in �ne-tuning
scenario, the downstream tasks mostly share low-level feature rep-
resentation with the pre-training task, it’s still bene�cial to adjust
the low and middle-level feature extractor. Second, we observe that
using adapters stabilizes the convergence process, while �ne-tuning
on the full model easily goes to over�tting. Though the over�tting
can be remedied by carefully tuning the hyper-parameters such as
learning rate and batch size, it also requires non-trivial e�orts for
each separated �ne-tuning task.

Network cost analysis The trainable parameter number per
adapter is 2<= + = +<. Clients only send those parameters and
last-layer classi�er parameters after on-device training to the cloud
aggregator. Therefore the network transmission per round is re-
duced to ⇡ ⇥ (2<= + = +<) + = ⇥ #;014;B , where ⇡ is the total
number of transformer blocks of the NLP model. As shown in Ta-
ble 1, compared to �ne-tuning the whole BERT model, the network
saving could be more than 99%.

Compute cost analysisThe computation FLOPs of each adapter
in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized to single data
sample), where B4@;4= is the sequence length (default 256 in BERT).
This incurred overhead is trivial compared to the original model
complexity, e.g., less than 1% on BERT. On the other hand, since all
other parameters are �xed during training, the computation during
backward propagation is reduced by skipping calculating most of
the weights’ gradients. As shown in Table 1, using adapter brings
around 40% training time reduction.

4

(a) CV models vs. NLP models (b) FL convegence time

�
� �� �� � 	��
�"�������$�����"���� %�����

��$# ����

��$# �����

������

� �!� � ���

(c) Breakdown of FedNLP (d) Layer freezing in FedNLP
Figure 2: The preliminary measurement results of FedNLP. (a) A glance at the complexity of NLP models and traditional
CNNs; (b) End-to-end convergence time of CV and NLP models under FL settings (CV1: “Densenet-121 [34] + CelebA [49]”;
CV2: “Resnet56 [28] + Cifar-100 [39]”; NLP: “BERT [20] + Semeval [29]”). (c) Training time breakdown of FedNLP tasks
on di�erent hardware. Model: BERT; batch size: 4. (d) The performance of layer freezing. Model: DistilBERT [64]. Dataset:
ONTONOTES [57]; batch size: 4.

Figure 3: The structure of adapters used.

3 DESIGN
3.1 Plugable Adapters
Transformer adapters For e�cient FedNLP, we retro�t adapters
– a recently proposed technique for both CV and NLP tasks to
achieve parameter e�ciency in machine learning [32]. The initial
goal of adapters is to reduce the tunable parameters especially in
continuous learning [18] scenario where unlimited number of new
tasks might emerge. However, it has been seldomly used to tackle
system challenges like network cost and convergence speed. As far
as we know, AutoFedNLP is the �rst to apply adapters to federated
NLP tasks and demonstrate its e�ciency under a system context.

The key idea of adapter is to freeze the whole original model
but insert a few small modules into di�erent locations inside it.
Figure 3 shows the bottleneck architecture of our adapters and
how it’s applied to the transformer. Recall that each transformer
layer contains two primary sub-layers: an attention layer and a
feedforward layer, followed immediately by layer normalization. A
residual connection is applied across each of the sub-layers. The
adapter approach inserts small modules (adapters) between trans-
former layers. The adapter layer generally uses a down-projection
with]down 2 R=⇥< to project the input ⌘ to a lower-dimensional
space speci�ed by bottleneck dimension<, followed by a nonlinear
activation function 5 (·), and a up-projection with]up 2 R<⇥= .
These adapters are surrounded by a residual connection, leading to
a �nal form as:

h h + 5 (h]down)]up .

Considering that the same adapter inserted into the feed-forward
network always outperforms its attention counterpart [27], we
follow prior work [54], a more e�cient adapter variant to only

insert one adapter module after the second sub-layer, i.e., the feed-
forward network "add & layer norm" sublayer. The output of the
adapter is then passed directly into the next transformer layer.

The rationales behind adaptersWhy adapter is able to achieve
comparable accuracy with much fewer parameters than freezing
the bottom transformer layers without revising the model struc-
ture? We reason it with two insights from our experiments and
related literature [54, 63].

First, adapters allow modifying a model’s hidden state at a low
cost. By keeping the whole original model as it is, adapters canmaxi-
mally preserve the knowledge learned from the pre-training dataset.
The pluggable adapters are only used to encode task-speci�c rep-
resentations in intermediate layers of the shared model. With a
bottleneck architecture, an adapter contains much fewer parame-
ters than a whole transformer block, presuming that adapters can
be inserted into “deeper” transformer blocks. While in �ne-tuning
scenario, the downstream tasks mostly share low-level feature rep-
resentation with the pre-training task, it’s still bene�cial to adjust
the low and middle-level feature extractor. Second, we observe that
using adapters stabilizes the convergence process, while �ne-tuning
on the full model easily goes to over�tting. Though the over�tting
can be remedied by carefully tuning the hyper-parameters such as
learning rate and batch size, it also requires non-trivial e�orts for
each separated �ne-tuning task.

Network cost analysis The trainable parameter number per
adapter is 2<= + = +<. Clients only send those parameters and
last-layer classi�er parameters after on-device training to the cloud
aggregator. Therefore the network transmission per round is re-
duced to ⇡ ⇥ (2<= + = +<) + = ⇥ #;014;B , where ⇡ is the total
number of transformer blocks of the NLP model. As shown in Ta-
ble 1, compared to �ne-tuning the whole BERT model, the network
saving could be more than 99%.

Compute cost analysisThe computation FLOPs of each adapter
in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized to single data
sample), where B4@;4= is the sequence length (default 256 in BERT).
This incurred overhead is trivial compared to the original model
complexity, e.g., less than 1% on BERT. On the other hand, since all
other parameters are �xed during training, the computation during
backward propagation is reduced by skipping calculating most of
the weights’ gradients. As shown in Table 1, using adapter brings
around 40% training time reduction.

4

Observation 2: FedNLP task is extremely slow.

(a) CV models vs. NLP models (b) FL convegence time

�
� �� �� � 	��
�"�������$�����"���� %�����

��$# ����

��$# �����

������

� �!� � ���

(c) Breakdown of FedNLP (d) Layer freezing in FedNLP
Figure 2: The preliminary measurement results of FedNLP. (a) A glance at the complexity of NLP models and traditional
CNNs; (b) End-to-end convergence time of CV and NLP models under FL settings (CV1: “Densenet-121 [34] + CelebA [49]”;
CV2: “Resnet56 [28] + Cifar-100 [39]”; NLP: “BERT [20] + Semeval [29]”). (c) Training time breakdown of FedNLP tasks
on di�erent hardware. Model: BERT; batch size: 4. (d) The performance of layer freezing. Model: DistilBERT [64]. Dataset:
ONTONOTES [57]; batch size: 4.

Figure 3: The structure of adapters used.

3 DESIGN
3.1 Plugable Adapters
Transformer adapters For e�cient FedNLP, we retro�t adapters
– a recently proposed technique for both CV and NLP tasks to
achieve parameter e�ciency in machine learning [32]. The initial
goal of adapters is to reduce the tunable parameters especially in
continuous learning [18] scenario where unlimited number of new
tasks might emerge. However, it has been seldomly used to tackle
system challenges like network cost and convergence speed. As far
as we know, AutoFedNLP is the �rst to apply adapters to federated
NLP tasks and demonstrate its e�ciency under a system context.

The key idea of adapter is to freeze the whole original model
but insert a few small modules into di�erent locations inside it.
Figure 3 shows the bottleneck architecture of our adapters and
how it’s applied to the transformer. Recall that each transformer
layer contains two primary sub-layers: an attention layer and a
feedforward layer, followed immediately by layer normalization. A
residual connection is applied across each of the sub-layers. The
adapter approach inserts small modules (adapters) between trans-
former layers. The adapter layer generally uses a down-projection
with]down 2 R=⇥< to project the input ⌘ to a lower-dimensional
space speci�ed by bottleneck dimension<, followed by a nonlinear
activation function 5 (·), and a up-projection with]up 2 R<⇥= .
These adapters are surrounded by a residual connection, leading to
a �nal form as:

h h + 5 (h]down)]up .

Considering that the same adapter inserted into the feed-forward
network always outperforms its attention counterpart [27], we
follow prior work [54], a more e�cient adapter variant to only

insert one adapter module after the second sub-layer, i.e., the feed-
forward network "add & layer norm" sublayer. The output of the
adapter is then passed directly into the next transformer layer.

The rationales behind adaptersWhy adapter is able to achieve
comparable accuracy with much fewer parameters than freezing
the bottom transformer layers without revising the model struc-
ture? We reason it with two insights from our experiments and
related literature [54, 63].

First, adapters allow modifying a model’s hidden state at a low
cost. By keeping the whole original model as it is, adapters canmaxi-
mally preserve the knowledge learned from the pre-training dataset.
The pluggable adapters are only used to encode task-speci�c rep-
resentations in intermediate layers of the shared model. With a
bottleneck architecture, an adapter contains much fewer parame-
ters than a whole transformer block, presuming that adapters can
be inserted into “deeper” transformer blocks. While in �ne-tuning
scenario, the downstream tasks mostly share low-level feature rep-
resentation with the pre-training task, it’s still bene�cial to adjust
the low and middle-level feature extractor. Second, we observe that
using adapters stabilizes the convergence process, while �ne-tuning
on the full model easily goes to over�tting. Though the over�tting
can be remedied by carefully tuning the hyper-parameters such as
learning rate and batch size, it also requires non-trivial e�orts for
each separated �ne-tuning task.

Network cost analysis The trainable parameter number per
adapter is 2<= + = +<. Clients only send those parameters and
last-layer classi�er parameters after on-device training to the cloud
aggregator. Therefore the network transmission per round is re-
duced to ⇡ ⇥ (2<= + = +<) + = ⇥ #;014;B , where ⇡ is the total
number of transformer blocks of the NLP model. As shown in Ta-
ble 1, compared to �ne-tuning the whole BERT model, the network
saving could be more than 99%.

Compute cost analysisThe computation FLOPs of each adapter
in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized to single data
sample), where B4@;4= is the sequence length (default 256 in BERT).
This incurred overhead is trivial compared to the original model
complexity, e.g., less than 1% on BERT. On the other hand, since all
other parameters are �xed during training, the computation during
backward propagation is reduced by skipping calculating most of
the weights’ gradients. As shown in Table 1, using adapter brings
around 40% training time reduction.

4

Observation 3: Network transmission dominates
the training delay on high-end devices.

(a) CV models vs. NLP models (b) FL convegence time

�
� �� �� � 	��
�"�������$�����"���� %�����

��$# ����

��$# �����

������

� �!� � ���

(c) Breakdown of FedNLP

� � 	
 � �
� ��$������#� !

	�

��

�

��
��

!�
��

�
��

��
��

��
�

��
��

 !
�

����

�

�

�

�	

�
��

"
��

#�
��

!!
���

�

��!!

(d) Layer freezing in FedNLP
Figure 2: The preliminary measurement results of FedNLP. (a) A glance at the complexity of NLP models and traditional
CNNs; (b) End-to-end convergence time of CV and NLP models under FL settings (CV1: “Densenet-121 [34] + CelebA [49]”;
CV2: “Resnet56 [28] + Cifar-100 [39]”; NLP: “BERT [20] + Semeval [29]”). (c) Training time breakdown of FedNLP tasks
on di�erent hardware. Model: BERT; batch size: 4. (d) The performance of layer freezing. Model: DistilBERT [64]. Dataset:
ONTONOTES [57]; batch size: 4.

Figure 3: The structure of adapters used.

3 DESIGN
3.1 Plugable Adapters
Transformer adapters For e�cient FedNLP, we retro�t adapters
– a recently proposed technique for both CV and NLP tasks to
achieve parameter e�ciency in machine learning [32]. The initial
goal of adapters is to reduce the tunable parameters especially in
continuous learning [18] scenario where unlimited number of new
tasks might emerge. However, it has been seldomly used to tackle
system challenges like network cost and convergence speed. As far
as we know, AutoFedNLP is the �rst to apply adapters to federated
NLP tasks and demonstrate its e�ciency under a system context.

The key idea of adapter is to freeze the whole original model
but insert a few small modules into di�erent locations inside it.
Figure 3 shows the bottleneck architecture of our adapters and
how it’s applied to the transformer. Recall that each transformer
layer contains two primary sub-layers: an attention layer and a
feedforward layer, followed immediately by layer normalization. A
residual connection is applied across each of the sub-layers. The
adapter approach inserts small modules (adapters) between trans-
former layers. The adapter layer generally uses a down-projection
with]down 2 R=⇥< to project the input ⌘ to a lower-dimensional
space speci�ed by bottleneck dimension<, followed by a nonlinear
activation function 5 (·), and a up-projection with]up 2 R<⇥= .
These adapters are surrounded by a residual connection, leading to
a �nal form as:

h h + 5 (h]down)]up .

Considering that the same adapter inserted into the feed-forward
network always outperforms its attention counterpart [27], we
follow prior work [54], a more e�cient adapter variant to only

insert one adapter module after the second sub-layer, i.e., the feed-
forward network "add & layer norm" sublayer. The output of the
adapter is then passed directly into the next transformer layer.

The rationales behind adaptersWhy adapter is able to achieve
comparable accuracy with much fewer parameters than freezing
the bottom transformer layers without revising the model struc-
ture? We reason it with two insights from our experiments and
related literature [54, 63].

First, adapters allow modifying a model’s hidden state at a low
cost. By keeping the whole original model as it is, adapters canmaxi-
mally preserve the knowledge learned from the pre-training dataset.
The pluggable adapters are only used to encode task-speci�c rep-
resentations in intermediate layers of the shared model. With a
bottleneck architecture, an adapter contains much fewer parame-
ters than a whole transformer block, presuming that adapters can
be inserted into “deeper” transformer blocks. While in �ne-tuning
scenario, the downstream tasks mostly share low-level feature rep-
resentation with the pre-training task, it’s still bene�cial to adjust
the low and middle-level feature extractor. Second, we observe that
using adapters stabilizes the convergence process, while �ne-tuning
on the full model easily goes to over�tting. Though the over�tting
can be remedied by carefully tuning the hyper-parameters such as
learning rate and batch size, it also requires non-trivial e�orts for
each separated �ne-tuning task.

Network cost analysis The trainable parameter number per
adapter is 2<= + = +<. Clients only send those parameters and
last-layer classi�er parameters after on-device training to the cloud
aggregator. Therefore the network transmission per round is re-
duced to ⇡ ⇥ (2<= + = +<) + = ⇥ #;014;B , where ⇡ is the total
number of transformer blocks of the NLP model. As shown in Ta-
ble 1, compared to �ne-tuning the whole BERT model, the network
saving could be more than 99%.

Compute cost analysisThe computation FLOPs of each adapter
in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized to single data
sample), where B4@;4= is the sequence length (default 256 in BERT).
This incurred overhead is trivial compared to the original model
complexity, e.g., less than 1% on BERT. On the other hand, since all
other parameters are �xed during training, the computation during
backward propagation is reduced by skipping calculating most of
the weights’ gradients. As shown in Table 1, using adapter brings
around 40% training time reduction.

4

Observation 4: Existing techniques are
inadequate for FedNLP.

7/30

Key Building Block: Pluggable Adapters

Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Transformer

...

Wup

Wdown

Nonlinear

Adapter 425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

Resource-E�icient Federated Learning for Modern NLP MobiCom ’23, Oct 09-12, 2023, Madrid, Spain

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Model Method Training Time Updated Paras.

BERT Full Fine-tuning 1.86 sec 110.01 x 106
Adapter 1.14 sec 0.61 x 106

DistilBERT Full Fine-tuning 0.91 sec 67 x 106
Adapter 0.56 sec 0.32 x 106

Table 1: Computation and communication cost
of inserting adapters into each transformer block
(width=32) and full-model tuning on Jetson TX2.
than freezing the bottom transformer layers without revising
the model structure? We reason it with two insights from
our experiments and related literature [57, 66].
First, adapters allow modifying a model’s hidden state

at a low cost. By keeping the whole original model as it
is, adapters can maximally preserve the knowledge learned
from the pre-training dataset. The pluggable adapters are
only used to encode task-speci�c representations in inter-
mediate layers of the shared model. While in �ne-tuning
scenario, the downstream tasks mostly share low-level fea-
ture representation with the pre-training task, it’s still ben-
e�cial to adjust the low and middle-level feature extractor.
Second, we observe that using adapters stabilizes the con-
vergence process, while �ne-tuning on the full model easily
goes to over�tting. Though the over�tting can be remedied
by carefully tuning the hyper-parameters, it also requires
non-trivial e�orts for each separated �ne-tuning task.

Network cost analysis The trainable parameter number
per adapter is 2<=+=+<. Clients only send those parameters
and last-layer classi�er parameters after on-device training
to the aggregator. Therefore the network transmission per
round is reduced to⇡⇥ (2<=+=+<)+=⇥#;014;B , where⇡ is
the total number of transformer blocks of the NLP model. As
shown in Table 1, compared to �ne-tuning the whole BERT
model, the network saving could be more than 99%.

Compute cost analysis The computation FLOPs of each
adapter in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized
to single data sample), where B4@;4= is the sequence length
(default 256 in BERT). This incurred overhead is trivial com-
pared to the original model complexity, e.g., less than 1%
on BERT. On the other hand, since all other parameters are
�xed during training, calculating the gradients of those �xed
weights can be avoided in backward propagation. Table 1
shows adapter brings around 40% training time reduction.

3.2 The Con�guration Challenge
A unique challenge raised by adapters is its sensitivity to the
con�gurations (explained below). Di�erent con�gurations re-
sult in a variety of convergence delays, up to 4.7⇥ gap. Choos-
ing an “optimal” con�guration towards fast convergence is
fundamentally challenging for the following reasons.
Large adapter con�guration space There are two critical
parameters of adapters to be determined: depth and width.
(1) Similar to the idea of layer freezing, adapters are not

Model Datasets
Optimal adapter con�guration (depth, width)

towards di�erent target accuracy

BERT

99% 95% 90% 80% 70%
20news (2,64) (2,32) (2,8) (2,8) (2,8)
agnews (3,16) (2,16) (2,8) (0,8) (0,8)
semeval (10,8) (6,8) (6,8) (2,8) (2,8)
ontonotes (12, 32) (12, 32) (10, 32) (0, 16) (0, 16)

Table 2: The optimal adapter con�guration (i.e., best
time-to-accuracy) for di�erent target accuracy (ratio
to the full convergence) and di�erent datasets.

necessarily inserted into each transformer block. Reducing
the number of adapters inserted into the top blocks (namely
tuning depth) can e�ectively reduce the network cost and on-
device training time. (2) Apart from the depth, the bottleneck
size (tuning width), i.e., the target projection dimension of
input needs to be carefully set as well. A small width might
not su�ce to encode the latent features for �ne-tuning tasks
and thus incurs high accuracy degradation. Yet, a too wide
adapter incurs high resource costs and therefore slows down
the training (i.e., increased time to accuracy). Overall, the
candidate depth spans from 0 to the number of transformer
layers even if we only consider inserting adapters at top
K consecutive layers, i.e., 12 in BERT, and the valid widths
range from 8 to 64 according to our experiments. That results
in hundreds of di�erent alternative con�gurations.
Another dimension of design space is that the con�gu-

ration can be switched across FL rounds during a training
session. §3.3 elaborates how such switching could be realized
with the knowledge learned by the old adapter con�guration
well preserved. But within a round, clients better use the
same con�guration to facilitate the model aggregation.
Decisions must be online Making a good decision o�ine
is di�cult without pre-knowledge about the training dataset
– a common setup in �ne-tuning scenarios. Even with the
same task, with the data distribution drifting over time, the
resultant model structure could di�er tremendously [33, 46].
No silver bullet con�guration A key observation we
made from extensive experiments is that there is no silver-
bullet con�guration for FedNLP tasks. Rather, the optimal con-
�guration depends on many factors: the speci�c NLP tasks,
the target accuracy, and client resources such as network
bandwidth and local execution speed. Even with a given
pre-trained model, there are many factors that a�ect which
con�guration shall be picked for the fastest convergence.
• Targeted accuracy. Within a training session, di�erent tar-
get accuracy favors di�erent con�gurations. As shown in
Figure 4 (a), to achieve the best accuracy possible, using an
adapter with depth 6 and width 16 is the best option. If 80%
relative accuracy is satisfactory, the adapter with depth 2
and width 8 is 2⇥ faster than the previous con�guration.
• Targeted NLP tasks. Across di�erent FedNLP tasks, the
optimal adapter con�guration varies. As shown in Figure

5

Table 1: Computation and communication cost of inserting
adapters into each transformer block (width=32) and full model
tuning. Batch size: 4. Device: Jetson TX2.

• Tiny adapters (less than 1M for each) are inserted to pre-trained Transformers.
• Only adapters are updated during training, most of Transformer parameters are freezing.

8/30

Key Building Block: Pluggable Adapters

Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Transformer

...

Wup

Wdown

Nonlinear

Adapter 425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

Resource-E�icient Federated Learning for Modern NLP MobiCom ’23, Oct 09-12, 2023, Madrid, Spain

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Model Method Training Time Updated Paras.

BERT Full Fine-tuning 1.86 sec 110.01 x 106
Adapter 1.14 sec 0.61 x 106

DistilBERT Full Fine-tuning 0.91 sec 67 x 106
Adapter 0.56 sec 0.32 x 106

Table 1: Computation and communication cost
of inserting adapters into each transformer block
(width=32) and full-model tuning on Jetson TX2.
than freezing the bottom transformer layers without revising
the model structure? We reason it with two insights from
our experiments and related literature [57, 66].
First, adapters allow modifying a model’s hidden state

at a low cost. By keeping the whole original model as it
is, adapters can maximally preserve the knowledge learned
from the pre-training dataset. The pluggable adapters are
only used to encode task-speci�c representations in inter-
mediate layers of the shared model. While in �ne-tuning
scenario, the downstream tasks mostly share low-level fea-
ture representation with the pre-training task, it’s still ben-
e�cial to adjust the low and middle-level feature extractor.
Second, we observe that using adapters stabilizes the con-
vergence process, while �ne-tuning on the full model easily
goes to over�tting. Though the over�tting can be remedied
by carefully tuning the hyper-parameters, it also requires
non-trivial e�orts for each separated �ne-tuning task.

Network cost analysis The trainable parameter number
per adapter is 2<=+=+<. Clients only send those parameters
and last-layer classi�er parameters after on-device training
to the aggregator. Therefore the network transmission per
round is reduced to⇡⇥ (2<=+=+<)+=⇥#;014;B , where⇡ is
the total number of transformer blocks of the NLP model. As
shown in Table 1, compared to �ne-tuning the whole BERT
model, the network saving could be more than 99%.

Compute cost analysis The computation FLOPs of each
adapter in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized
to single data sample), where B4@;4= is the sequence length
(default 256 in BERT). This incurred overhead is trivial com-
pared to the original model complexity, e.g., less than 1%
on BERT. On the other hand, since all other parameters are
�xed during training, calculating the gradients of those �xed
weights can be avoided in backward propagation. Table 1
shows adapter brings around 40% training time reduction.

3.2 The Con�guration Challenge
A unique challenge raised by adapters is its sensitivity to the
con�gurations (explained below). Di�erent con�gurations re-
sult in a variety of convergence delays, up to 4.7⇥ gap. Choos-
ing an “optimal” con�guration towards fast convergence is
fundamentally challenging for the following reasons.
Large adapter con�guration space There are two critical
parameters of adapters to be determined: depth and width.
(1) Similar to the idea of layer freezing, adapters are not

Model Datasets
Optimal adapter con�guration (depth, width)

towards di�erent target accuracy

BERT

99% 95% 90% 80% 70%
20news (2,64) (2,32) (2,8) (2,8) (2,8)
agnews (3,16) (2,16) (2,8) (0,8) (0,8)
semeval (10,8) (6,8) (6,8) (2,8) (2,8)
ontonotes (12, 32) (12, 32) (10, 32) (0, 16) (0, 16)

Table 2: The optimal adapter con�guration (i.e., best
time-to-accuracy) for di�erent target accuracy (ratio
to the full convergence) and di�erent datasets.

necessarily inserted into each transformer block. Reducing
the number of adapters inserted into the top blocks (namely
tuning depth) can e�ectively reduce the network cost and on-
device training time. (2) Apart from the depth, the bottleneck
size (tuning width), i.e., the target projection dimension of
input needs to be carefully set as well. A small width might
not su�ce to encode the latent features for �ne-tuning tasks
and thus incurs high accuracy degradation. Yet, a too wide
adapter incurs high resource costs and therefore slows down
the training (i.e., increased time to accuracy). Overall, the
candidate depth spans from 0 to the number of transformer
layers even if we only consider inserting adapters at top
K consecutive layers, i.e., 12 in BERT, and the valid widths
range from 8 to 64 according to our experiments. That results
in hundreds of di�erent alternative con�gurations.
Another dimension of design space is that the con�gu-

ration can be switched across FL rounds during a training
session. §3.3 elaborates how such switching could be realized
with the knowledge learned by the old adapter con�guration
well preserved. But within a round, clients better use the
same con�guration to facilitate the model aggregation.
Decisions must be online Making a good decision o�ine
is di�cult without pre-knowledge about the training dataset
– a common setup in �ne-tuning scenarios. Even with the
same task, with the data distribution drifting over time, the
resultant model structure could di�er tremendously [33, 46].
No silver bullet con�guration A key observation we
made from extensive experiments is that there is no silver-
bullet con�guration for FedNLP tasks. Rather, the optimal con-
�guration depends on many factors: the speci�c NLP tasks,
the target accuracy, and client resources such as network
bandwidth and local execution speed. Even with a given
pre-trained model, there are many factors that a�ect which
con�guration shall be picked for the fastest convergence.
• Targeted accuracy. Within a training session, di�erent tar-
get accuracy favors di�erent con�gurations. As shown in
Figure 4 (a), to achieve the best accuracy possible, using an
adapter with depth 6 and width 16 is the best option. If 80%
relative accuracy is satisfactory, the adapter with depth 2
and width 8 is 2⇥ faster than the previous con�guration.
• Targeted NLP tasks. Across di�erent FedNLP tasks, the
optimal adapter con�guration varies. As shown in Figure

5

Table 1: Computation and communication cost of inserting
adapters into each transformer block (width=32) and full model
tuning. Batch size: 4. Device: Jetson TX2.

• Tiny adapters (less than 1M for each) are inserted to pre-trained Transformers.
• Only adapters are updated during training, most of Transformer parameters are freezing.

9/30

Key Building Block: Pluggable Adapters

Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Transformer

...

Wup

Wdown

Nonlinear

Adapter 425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

Resource-E�icient Federated Learning for Modern NLP MobiCom ’23, Oct 09-12, 2023, Madrid, Spain

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Model Method Training Time Updated Paras.

BERT Full Fine-tuning 1.86 sec 110.01 x 106
Adapter 1.14 sec 0.61 x 106

DistilBERT Full Fine-tuning 0.91 sec 67 x 106
Adapter 0.56 sec 0.32 x 106

Table 1: Computation and communication cost
of inserting adapters into each transformer block
(width=32) and full-model tuning on Jetson TX2.
than freezing the bottom transformer layers without revising
the model structure? We reason it with two insights from
our experiments and related literature [57, 66].
First, adapters allow modifying a model’s hidden state

at a low cost. By keeping the whole original model as it
is, adapters can maximally preserve the knowledge learned
from the pre-training dataset. The pluggable adapters are
only used to encode task-speci�c representations in inter-
mediate layers of the shared model. While in �ne-tuning
scenario, the downstream tasks mostly share low-level fea-
ture representation with the pre-training task, it’s still ben-
e�cial to adjust the low and middle-level feature extractor.
Second, we observe that using adapters stabilizes the con-
vergence process, while �ne-tuning on the full model easily
goes to over�tting. Though the over�tting can be remedied
by carefully tuning the hyper-parameters, it also requires
non-trivial e�orts for each separated �ne-tuning task.

Network cost analysis The trainable parameter number
per adapter is 2<=+=+<. Clients only send those parameters
and last-layer classi�er parameters after on-device training
to the aggregator. Therefore the network transmission per
round is reduced to⇡⇥ (2<=+=+<)+=⇥#;014;B , where⇡ is
the total number of transformer blocks of the NLP model. As
shown in Table 1, compared to �ne-tuning the whole BERT
model, the network saving could be more than 99%.

Compute cost analysis The computation FLOPs of each
adapter in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized
to single data sample), where B4@;4= is the sequence length
(default 256 in BERT). This incurred overhead is trivial com-
pared to the original model complexity, e.g., less than 1%
on BERT. On the other hand, since all other parameters are
�xed during training, calculating the gradients of those �xed
weights can be avoided in backward propagation. Table 1
shows adapter brings around 40% training time reduction.

3.2 The Con�guration Challenge
A unique challenge raised by adapters is its sensitivity to the
con�gurations (explained below). Di�erent con�gurations re-
sult in a variety of convergence delays, up to 4.7⇥ gap. Choos-
ing an “optimal” con�guration towards fast convergence is
fundamentally challenging for the following reasons.
Large adapter con�guration space There are two critical
parameters of adapters to be determined: depth and width.
(1) Similar to the idea of layer freezing, adapters are not

Model Datasets
Optimal adapter con�guration (depth, width)

towards di�erent target accuracy

BERT

99% 95% 90% 80% 70%
20news (2,64) (2,32) (2,8) (2,8) (2,8)
agnews (3,16) (2,16) (2,8) (0,8) (0,8)
semeval (10,8) (6,8) (6,8) (2,8) (2,8)
ontonotes (12, 32) (12, 32) (10, 32) (0, 16) (0, 16)

Table 2: The optimal adapter con�guration (i.e., best
time-to-accuracy) for di�erent target accuracy (ratio
to the full convergence) and di�erent datasets.

necessarily inserted into each transformer block. Reducing
the number of adapters inserted into the top blocks (namely
tuning depth) can e�ectively reduce the network cost and on-
device training time. (2) Apart from the depth, the bottleneck
size (tuning width), i.e., the target projection dimension of
input needs to be carefully set as well. A small width might
not su�ce to encode the latent features for �ne-tuning tasks
and thus incurs high accuracy degradation. Yet, a too wide
adapter incurs high resource costs and therefore slows down
the training (i.e., increased time to accuracy). Overall, the
candidate depth spans from 0 to the number of transformer
layers even if we only consider inserting adapters at top
K consecutive layers, i.e., 12 in BERT, and the valid widths
range from 8 to 64 according to our experiments. That results
in hundreds of di�erent alternative con�gurations.
Another dimension of design space is that the con�gu-

ration can be switched across FL rounds during a training
session. §3.3 elaborates how such switching could be realized
with the knowledge learned by the old adapter con�guration
well preserved. But within a round, clients better use the
same con�guration to facilitate the model aggregation.
Decisions must be online Making a good decision o�ine
is di�cult without pre-knowledge about the training dataset
– a common setup in �ne-tuning scenarios. Even with the
same task, with the data distribution drifting over time, the
resultant model structure could di�er tremendously [33, 46].
No silver bullet con�guration A key observation we
made from extensive experiments is that there is no silver-
bullet con�guration for FedNLP tasks. Rather, the optimal con-
�guration depends on many factors: the speci�c NLP tasks,
the target accuracy, and client resources such as network
bandwidth and local execution speed. Even with a given
pre-trained model, there are many factors that a�ect which
con�guration shall be picked for the fastest convergence.
• Targeted accuracy. Within a training session, di�erent tar-
get accuracy favors di�erent con�gurations. As shown in
Figure 4 (a), to achieve the best accuracy possible, using an
adapter with depth 6 and width 16 is the best option. If 80%
relative accuracy is satisfactory, the adapter with depth 2
and width 8 is 2⇥ faster than the previous con�guration.
• Targeted NLP tasks. Across di�erent FedNLP tasks, the
optimal adapter con�guration varies. As shown in Figure

5

Table 1: Computation and communication cost of inserting
adapters into each transformer block (width=32) and full model
tuning. Batch size: 4. Device: Jetson TX2.

• Tiny adapters (less than 1M for each) are inserted to pre-trained Transformers.
• Only adapters are updated during training, most of Transformer parameters are freezing.

10/30

Challenge: Large Adapter Configuration Space

Different adapter configurations (depth, width) result in a variety of
convergence delays, up to 4.7× gap.

Attention

Add & Norm

Feed Forward

Add & Norm

Null

Transformer

Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Transformer

Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Transformer

Layer 0 Layer i Layer 11……

11/30

Challenge: Large Adapter Configuration Space

Different adapter configurations (depth, width) result in a variety of
convergence delays, up to 4.7× gap.

Attention

Add & Norm

Feed Forward

Add & Norm

Null

Transformer

Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Transformer

Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Transformer

Layer 0 Layer i Layer 11……

Number of adapters: Tuning depth…

12/30

Challenge: Large Adapter Configuration Space

Different adapter configurations (depth, width) result in a variety of
convergence delays, up to 4.7× gap.

Attention

Add & Norm

Feed Forward

Add & Norm

Null

Transformer

Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Transformer

Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Transformer

Layer 0 Layer i Layer 11……

Number of adapters: Tuning depth…

D.

Adapter Structure: Bottleneck

Wup

Hidden State Dimen.

Hidden State Dimen.

Wdown

Small bottleneck
dimension

Dimen.

Large bottleneck
dimension

Wup

Hidden State Dimen.

Hidden State Dimen.

Wdown

Bottleneck size: Tuning width

13/30

Challenge: No Silver Bullet Configuration

• The optimal configuration can be switched across FL rounds.

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

(a) SEMEVAL (b) 20NEWS
Figure 4: Across di�erent target accuracy and FedNLP
tasks, the optimal adapter con�guration (depth,
width) varies. Tested with BERT and Jetson TX2.
4, using depth 2 and width 8 leads to fast convergence to
80% accuracy on 20NEWS [44]. However, on SEMEVAL [31],
the same con�guration results in 10% lower convergence
accuracy as compared to a more complex con�guration.
• Client resources. Local clients’ training speed and network
capacity also make a di�erence in adapter selection. This is
due to the disparate impacts of adapter depth/width on the
computation and communication reduction. For instance, a
larger tuning depth linearly ampli�es the communication
and computation cost, while a larger tuning width linearly
increases the communication cost but only adds negligible
computation cost according to the analysis in §3.1.
Why prior work is inadequate A closely related tech-
nique is neural architecture search (NAS) [22], which au-
tomatically looks for the best model structures but with a
totally di�erent design goal. Essentially, NAS sacri�ces the
time for good training accuracy, e.g., days to train a single
model in a centralized manner [83]. Instead, we pursue fast
time-to-accuracy, which is a more practical and a�ordable
setting for FedNLP developers.

3.3 The Online Con�gurator
We build a con�gurator that automatically adjusts the tuning
depth and width throughout a training session. The goal is
fast model convergence: achieving the target model accuracy
in the shortest time. Our key ideas are twofold:

• Progressive training. The �rst key idea is, to begin with
a shallow tuning con�guration (i.e., small depth and width)
to quickly boost the model accuracy. When it encounters
a “choke point” where more rounds of training no longer
provide enough accuracy pro�t, it “upgrades” to a more
complex con�guration, i.e., either deeper or wider.
Such upgrading mechanism is inspired by curriculum

learning [11], a learning strategy that trains a model be-
ginning from easier data samples to harder ones. Instead of
altering the training samples, we propose to alter the model
structure. In the beginning, a simpler adapter con�guration
can learn fast. This is because, by focusing on fewer com-
pact trainable parameters closer to the model output, the

model can rapidly learn the coarse-grained domain-speci�c
knowledge for the downstream tasks, such as new class la-
bels [65]. For simple downstream tasks, �ne-tuning with-
out re-learning deep features is enough to obtain satisfac-
tory model accuracy, e.g., depth 2 and width 64 for 20NEWS
dataset [44]. As the training proceeds, the model encounters
a “choke point” where the learning curve becomes gentle.
It demands deeper or wider adapters to learn new features.
The experiment results in Table 2 attests to our claim that a
higher target accuracy favors deeper and wider adapters.

• Identifying timing and direction to upgrade con�guration
through sideline trials. The learning curve is fundamentally
challenging to be estimated or predicted ahead of time. How
can a system possibly know the timing and towhich direction
to upgrade? In this work, we propose an intuitive approach
based on the concept of sideline trials. Its key idea is to ask
extra participant clients to attempt di�erent con�gurations,
and make a decision on whether and where to upgrade based
on the tested accuracy of di�erent directions. In federated
settings, such “extra clients” are common because the client-
level parallelism of existing FL algorithms is notoriously
low. That is, limited by the learning theory [39], a small
number of clients (i.e., 5 for 20NEWS) is enough to saturate
the convergence performance (both accuracy and speed) and
allocating more clients gives a negligible return. As will be
shown in §6.2, using those extra clients for trial is much
more bene�cial than asking them to participate in training.
Con�gurator algorithm indetail Algorithm 1 shows how
AdaFL progressively upgrades the con�guration of adapters
during a training session. Unlike the traditional FL scheme
where only one global model with a �xed structure under-
goes the training, in AdaFL the cloud aggregator periodically
dispatches the global model to three groups of clients: one is
to train with the current con�guration, one with a deeper
one and the other with a wider one (line 2–5, 23-26). After a
few rounds of parallel training (line 27, 19–22, 7–10, 18), the
aggregator server checks the accuracy of three global models
and re-starts the process on the model with the highest accu-
racy (line 12–15). Note that when the aggregator checks the
accuracy, the three global models undergo di�erent numbers
of global rounds because the per-round training time and
network time depend on the adapter con�guration (§3.1).
Therefore, the training speed of di�erent tuning depth/width
is considered in this mechanism. Except that, the clients and
aggregator follow the common FL process in local training
(line 19–22) and model aggregation (line 8–9).

As described in Algorithm 1 (line 23–27), the models dis-
patched to di�erent groups are with di�erent model con�g-
urations. Group)A80;0 inherits the learned adapter from the
previous winner track whereas)A80;1 and)A80;2 also inherit
the old adapters but add extra depth and width, respectively.

6

Across different target accuracy and target FedNLP
tasks, the optimal adapter configuration (depth, width)
varies. Model: BERT; device: Jetson TX2.

14/30

Challenge: No Silver Bullet Configuration

• The optimal configuration can be switched across FL rounds.
• Configuration varies across many factors:

targeted accuracy, targeted NLP tasks and client resources.

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

Resource-E�icient Federated Learning for Modern NLP MobiCom ’23, Oct 09-12, 2023, Madrid, Spain

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Model Method Training Time Updated Paras.

BERT Full Fine-tuning 1.86 sec 110.01 x 106
Adapter 1.14 sec 0.61 x 106

DistilBERT Full Fine-tuning 0.91 sec 67 x 106
Adapter 0.56 sec 0.32 x 106

Table 1: Computation and communication cost
of inserting adapters into each transformer block
(width=32) and full-model tuning on Jetson TX2.
than freezing the bottom transformer layers without revising
the model structure? We reason it with two insights from
our experiments and related literature [57, 66].
First, adapters allow modifying a model’s hidden state

at a low cost. By keeping the whole original model as it
is, adapters can maximally preserve the knowledge learned
from the pre-training dataset. The pluggable adapters are
only used to encode task-speci�c representations in inter-
mediate layers of the shared model. While in �ne-tuning
scenario, the downstream tasks mostly share low-level fea-
ture representation with the pre-training task, it’s still ben-
e�cial to adjust the low and middle-level feature extractor.
Second, we observe that using adapters stabilizes the con-
vergence process, while �ne-tuning on the full model easily
goes to over�tting. Though the over�tting can be remedied
by carefully tuning the hyper-parameters, it also requires
non-trivial e�orts for each separated �ne-tuning task.

Network cost analysis The trainable parameter number
per adapter is 2<=+=+<. Clients only send those parameters
and last-layer classi�er parameters after on-device training
to the aggregator. Therefore the network transmission per
round is reduced to⇡⇥ (2<=+=+<)+=⇥#;014;B , where⇡ is
the total number of transformer blocks of the NLP model. As
shown in Table 1, compared to �ne-tuning the whole BERT
model, the network saving could be more than 99%.

Compute cost analysis The computation FLOPs of each
adapter in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized
to single data sample), where B4@;4= is the sequence length
(default 256 in BERT). This incurred overhead is trivial com-
pared to the original model complexity, e.g., less than 1%
on BERT. On the other hand, since all other parameters are
�xed during training, calculating the gradients of those �xed
weights can be avoided in backward propagation. Table 1
shows adapter brings around 40% training time reduction.

3.2 The Con�guration Challenge
A unique challenge raised by adapters is its sensitivity to the
con�gurations (explained below). Di�erent con�gurations re-
sult in a variety of convergence delays, up to 4.7⇥ gap. Choos-
ing an “optimal” con�guration towards fast convergence is
fundamentally challenging for the following reasons.
Large adapter con�guration space There are two critical
parameters of adapters to be determined: depth and width.
(1) Similar to the idea of layer freezing, adapters are not

Model Datasets
Optimal adapter con�guration (depth, width)

towards di�erent target accuracy

BERT

99% 95% 90% 80% 70%
20news (2,64) (2,32) (2,8) (2,8) (2,8)
agnews (3,16) (2,16) (2,8) (0,8) (0,8)
semeval (10,8) (6,8) (6,8) (2,8) (2,8)
ontonotes (12, 32) (12, 32) (10, 32) (0, 16) (0, 16)

Table 2: The optimal adapter con�guration (i.e., best
time-to-accuracy) for di�erent target accuracy (ratio
to the full convergence) and di�erent datasets.

necessarily inserted into each transformer block. Reducing
the number of adapters inserted into the top blocks (namely
tuning depth) can e�ectively reduce the network cost and on-
device training time. (2) Apart from the depth, the bottleneck
size (tuning width), i.e., the target projection dimension of
input needs to be carefully set as well. A small width might
not su�ce to encode the latent features for �ne-tuning tasks
and thus incurs high accuracy degradation. Yet, a too wide
adapter incurs high resource costs and therefore slows down
the training (i.e., increased time to accuracy). Overall, the
candidate depth spans from 0 to the number of transformer
layers even if we only consider inserting adapters at top
K consecutive layers, i.e., 12 in BERT, and the valid widths
range from 8 to 64 according to our experiments. That results
in hundreds of di�erent alternative con�gurations.
Another dimension of design space is that the con�gu-

ration can be switched across FL rounds during a training
session. §3.3 elaborates how such switching could be realized
with the knowledge learned by the old adapter con�guration
well preserved. But within a round, clients better use the
same con�guration to facilitate the model aggregation.
Decisions must be online Making a good decision o�ine
is di�cult without pre-knowledge about the training dataset
– a common setup in �ne-tuning scenarios. Even with the
same task, with the data distribution drifting over time, the
resultant model structure could di�er tremendously [33, 46].
No silver bullet con�guration A key observation we
made from extensive experiments is that there is no silver-
bullet con�guration for FedNLP tasks. Rather, the optimal con-
�guration depends on many factors: the speci�c NLP tasks,
the target accuracy, and client resources such as network
bandwidth and local execution speed. Even with a given
pre-trained model, there are many factors that a�ect which
con�guration shall be picked for the fastest convergence.
• Targeted accuracy. Within a training session, di�erent tar-
get accuracy favors di�erent con�gurations. As shown in
Figure 4 (a), to achieve the best accuracy possible, using an
adapter with depth 6 and width 16 is the best option. If 80%
relative accuracy is satisfactory, the adapter with depth 2
and width 8 is 2⇥ faster than the previous con�guration.
• Targeted NLP tasks. Across di�erent FedNLP tasks, the
optimal adapter con�guration varies. As shown in Figure

5

The optimal adapter configuration (i.e., best time to-
accuracy) for different target accuracy (ratio to the full
convergence accuracy) and different datasets.

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

(a) SEMEVAL (b) 20NEWS
Figure 4: Across di�erent target accuracy and FedNLP
tasks, the optimal adapter con�guration (depth,
width) varies. Tested with BERT and Jetson TX2.
4, using depth 2 and width 8 leads to fast convergence to
80% accuracy on 20NEWS [44]. However, on SEMEVAL [31],
the same con�guration results in 10% lower convergence
accuracy as compared to a more complex con�guration.
• Client resources. Local clients’ training speed and network
capacity also make a di�erence in adapter selection. This is
due to the disparate impacts of adapter depth/width on the
computation and communication reduction. For instance, a
larger tuning depth linearly ampli�es the communication
and computation cost, while a larger tuning width linearly
increases the communication cost but only adds negligible
computation cost according to the analysis in §3.1.
Why prior work is inadequate A closely related tech-
nique is neural architecture search (NAS) [22], which au-
tomatically looks for the best model structures but with a
totally di�erent design goal. Essentially, NAS sacri�ces the
time for good training accuracy, e.g., days to train a single
model in a centralized manner [83]. Instead, we pursue fast
time-to-accuracy, which is a more practical and a�ordable
setting for FedNLP developers.

3.3 The Online Con�gurator
We build a con�gurator that automatically adjusts the tuning
depth and width throughout a training session. The goal is
fast model convergence: achieving the target model accuracy
in the shortest time. Our key ideas are twofold:

• Progressive training. The �rst key idea is, to begin with
a shallow tuning con�guration (i.e., small depth and width)
to quickly boost the model accuracy. When it encounters
a “choke point” where more rounds of training no longer
provide enough accuracy pro�t, it “upgrades” to a more
complex con�guration, i.e., either deeper or wider.
Such upgrading mechanism is inspired by curriculum

learning [11], a learning strategy that trains a model be-
ginning from easier data samples to harder ones. Instead of
altering the training samples, we propose to alter the model
structure. In the beginning, a simpler adapter con�guration
can learn fast. This is because, by focusing on fewer com-
pact trainable parameters closer to the model output, the

model can rapidly learn the coarse-grained domain-speci�c
knowledge for the downstream tasks, such as new class la-
bels [65]. For simple downstream tasks, �ne-tuning with-
out re-learning deep features is enough to obtain satisfac-
tory model accuracy, e.g., depth 2 and width 64 for 20NEWS
dataset [44]. As the training proceeds, the model encounters
a “choke point” where the learning curve becomes gentle.
It demands deeper or wider adapters to learn new features.
The experiment results in Table 2 attests to our claim that a
higher target accuracy favors deeper and wider adapters.

• Identifying timing and direction to upgrade con�guration
through sideline trials. The learning curve is fundamentally
challenging to be estimated or predicted ahead of time. How
can a system possibly know the timing and towhich direction
to upgrade? In this work, we propose an intuitive approach
based on the concept of sideline trials. Its key idea is to ask
extra participant clients to attempt di�erent con�gurations,
and make a decision on whether and where to upgrade based
on the tested accuracy of di�erent directions. In federated
settings, such “extra clients” are common because the client-
level parallelism of existing FL algorithms is notoriously
low. That is, limited by the learning theory [39], a small
number of clients (i.e., 5 for 20NEWS) is enough to saturate
the convergence performance (both accuracy and speed) and
allocating more clients gives a negligible return. As will be
shown in §6.2, using those extra clients for trial is much
more bene�cial than asking them to participate in training.
Con�gurator algorithm indetail Algorithm 1 shows how
AdaFL progressively upgrades the con�guration of adapters
during a training session. Unlike the traditional FL scheme
where only one global model with a �xed structure under-
goes the training, in AdaFL the cloud aggregator periodically
dispatches the global model to three groups of clients: one is
to train with the current con�guration, one with a deeper
one and the other with a wider one (line 2–5, 23-26). After a
few rounds of parallel training (line 27, 19–22, 7–10, 18), the
aggregator server checks the accuracy of three global models
and re-starts the process on the model with the highest accu-
racy (line 12–15). Note that when the aggregator checks the
accuracy, the three global models undergo di�erent numbers
of global rounds because the per-round training time and
network time depend on the adapter con�guration (§3.1).
Therefore, the training speed of di�erent tuning depth/width
is considered in this mechanism. Except that, the clients and
aggregator follow the common FL process in local training
(line 19–22) and model aggregation (line 8–9).

As described in Algorithm 1 (line 23–27), the models dis-
patched to di�erent groups are with di�erent model con�g-
urations. Group)A80;0 inherits the learned adapter from the
previous winner track whereas)A80;1 and)A80;2 also inherit
the old adapters but add extra depth and width, respectively.

6

Across different target accuracy and target FedNLP
tasks, the optimal adapter configuration (depth, width)
varies. Model: BERT; device: Jetson TX2.

15/30

Design: Online Configurator
• Progressive training: curriculum upgrading adapter configuration.

Client Selector

1

Server
Management

Pre-Trained
ModelAdapter

2

3

Branch Generator

16/30

Design: Online Configurator
• Progressive training: curriculum upgrading adapter configuration.

Client Selector

1

Server
Management

Pre-Trained
ModelAdapter

2

3

Branch Generator

When and how to upgrade the configuration?
17/30

Design: Online Configurator
• Progressive training: curriculum upgrading adapter configuration.
• Sideline trails: identifying timing and direction to upgrade configuration.

Adapter

Adapter

Client Selector

1

T&
E

Sc
he

du
le

rServer
Management

Pre-Trained
ModelAdapter

Receiver Device
Database

Pre-Trained
ModelAdapterAdapterAdapter

AdapterAdapter
A

gg
re

ga
to

r

2

3

Group 1: Clients

Group 2: Clients

Group 3: Clients

4

5

6
9 78

8

5Branch Generator

When and how to upgrade the configuration?
18/30

Design: Online Configurator
• Progressive training: curriculum upgrading adapter configuration.
• Sideline trails: identifying timing and direction to upgrade configuration.

Adapter

Adapter

Client Selector

1

T&
E

Sc
he

du
le

rServer
Management

Pre-Trained
ModelAdapter

Receiver Device
Database

Pre-Trained
ModelAdapterAdapterAdapter

AdapterAdapter
A

gg
re

ga
to

r

2

3

Group 1: Clients

Group 2: Clients

Group 3: Clients

4

5

6
9 78

8

5Branch Generator

When and how to upgrade the configuration?
19/30

Further optimization: Activation Cache

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Layer
freezing

Adapter
tuning

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Input

Label

Output

w/o cache

20/30

Further optimization: Activation Cache

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Layer
freezing

Adapter
tuning

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Input

Label

Output

Intermediate activations

w/o cache

21/30

Further optimization: Activation Cache

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

An unique opportunity: Most of the Transformer parameters are freezing.

Layer
freezing

Adapter
tuning

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Input

Label

Output

Intermediate activations

w/o cache

22/30

Further optimization: Activation Cache

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

Disk Cache

w/o cache

w/ cache

An unique opportunity: Most of the Transformer parameters are freezing.

Layer
freezing

Adapter
tuning

Input

Label

Output

Intermediate activations

23/30

Evaluation: Setup

• Implementation
• FedNLP[1]

• AdapterHub[2]

• Setups
• 3 devices
• 2 models (BERT & DistilBERT)
• 4 datasets

• Baselines
1. Vanilla Fine-Tuning (FT)
2. FineTuning-Quantized (FTQ)
3. LayerFreeze-Oracle (LF𝑜𝑟𝑎𝑐𝑙𝑒)
4. LayerFreeze-Quantized-Oracle

(LFQ𝑜𝑟𝑎𝑐𝑙𝑒)

[1] Yuchen Lin B, He C, Zeng Z, et al. FedNLP: Benchmarking Federated Learning Methods for
Natural Language Processing Tasks[J]. Findings of NAACL, 2022.
[2] Pfeiffer J, Rücklé A, Poth C, et al. AdapterHub: A Framework for Adapting Transformers.
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. 2020: 46-54

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

Device Processor Per-batch
Latency (s)

Jetson TX2 [1] 256-core NVIDIA Pascal™ GPU. 0.88
Jetson Nano [2] 128-core NVIDIA CUDA® GPU. 1.89

RPI 4B [3] Broadcom BCM2711B0 quad-core
A72 64-bit @ 1.5GHz CPU. 18.27

Table 3: Development boards used in experiments.

Computation and storage cost analysis Using activa-
tion caching reduces the computations by 3B?;8C/⇡ at the for-
ward pass. Yet it also takes extra storage, i.e., B4@;4= ⇥= ⇥⌫(
per batch, where = is the transformer’s internal feature size
(default 768), and ⌫(is the batch size (default 4). The cache is
reloaded from disk per minibatch, taking no more than tens
of ms on embedded �ash and incurs less than 2% overhead.
The total cache size is also proportional to the number of
batches samples per client (typically dozens). Assuming 100
training samples, the storage cost is calculated to be around
100MB. Such cost is no more than 1% of the storage of a
modern mobile/embedded device, e.g., tens to hundreds of
GBs. The cache can be cleared once the FL process �nishes.

5 IMPLEMENTATION AND SETUPS
Wehave fully implemented the AdaFL prototype atop FedNLP
[50] (the SOTA framework to evaluate FL methods on NLP
tasks) and Adapterhub [58] (a library that facilitates the
integration of pre-trained adapters for di�erent tasks). As
prior work [13], we adopt the parameter server (PS) architec-
ture among the clients and central server. At the server side,
once job is submitted by the developer, the server initial-
izes the pluggable meta adapter to be trained (through the
API of Adapterhub) into the pre-trained model. The server
also splits the initialized meta adapter into three branches:
normal, wider and deeper. The wider branch will stack a
few meta adapters parallel to expand the bottleneck size of
adapter in single layer. The deeper branch will insert the
meta adapter into one more deeper layer. A client selector
will sample 3N clients from available devices and shu�e
them into 3 groups. We now employ a random client selec-
tor (default in most FL literature) but more advanced selec-
tion strategies [43, 46–48, 55, 81, 86, 93] can be plugged into
our implementation as well. Then, the server sends three
branches of adapters to three groups separately via MPI (in
standalone mode) or WLAN/Cellular (in distributed mode).
Once receiving the adapters, the clients insert the adapter
into their local pre-trained model. They �ne-tune the model
with their own private data. The trained adapters will be col-
lected in the central server and aggregated through FedAvg
algorithm [54]. All clients run in synchronized mode [32].

Metrics We mainly report the time-to-accuracy metric.
We divide the dataset of each device for training (80%) and

Task Dataset # of Clients Labels Non-IID Samples

TC 20NEWS [44] 100 20 / 18.8k
TC AGNEWS [92] 1,000 4 a=10 127.6k
TC SEMEVAL [31] 100 19 a=100 10.7k
ST ONTONOTES [60] 600 37 a=10 5.5k

Table 4: Datasets and settings used in experiments for
Text Classi�cation and Sequence Tagging. “a” is a pa-
rameter that controls the datasets’ non-IID level [50].

testing (20%). For clarity, we pay attention to a few typi-
cal accuracy targets, e.g., 99%, 95%, 90% of the full conver-
gence accuracy achievable by the baseline that �ne-tunes the
whole model. We refer to those accuracy numbers as relative
target accuracy. For example, the 100% relative target accu-
racy of BERT is 0.8 (accuracy) for 20NEWS; 0.9 (accuracy) for
AGNews; 0.8 (accuracy) for SEMEVAL; and 0.75 (token-F1) for
ONTONOTES. We also report the resource cost in an FL process,
including the total energy consumption on data transmitting
and training computation on each client; the total amount
of network tra�c; and the peak memory usage.

HardwareAs prior FL literature [43, 46, 48, 50, 70], our ex-
periments are carried out in an emulation manner on a GPU
server with 8x NVIDIA A40. The on-device training time is
obtained on 3 development boards with similar hardware
capacity to mainstream mobile devices, i.e., Jetson TX2 [1],
Jetson Nano [2], and Raspberry Pi 4B [3]. The numbers are
then plugged into the emulation framework to calculate the
elapsed time. The default network bandwidth between clients
and server is set to 1MB/s, a typical setting for mobile and
IoT devices [4, 25]. Note that while home/o�ce WiFi down-
link could be faster, the uplink bandwidth is often bound
by the broadband backbone [37]. In §6.1, we will also quan-
tify the performance of AdaFL under various hardware and
bandwidth settings (100KB/s–10MB/s).

Models We use two representative models for FedNLP
tasks: BERT [21] (default) and its varient DistilBERT [67].
BERT and DistilBERT are composed of 12 and 6 transformer
blocks, respectively. DistilBERT leverages knowledge distil-
lation during the pre-training phase and reduces the size of a
BERT model by 40%, while retaining 97% of its language un-
derstanding capabilities and being 60% faster. We use BERT
for most of our experiments, as all BERT-based variants de-
rive from it. The pre-trained weights of both models are
downloaded directly from Hugging Face [84].

Tasks and datasets We evaluate AdaFL on 4 classic NLP
downstream datasets as shown in Table 4. We follow the
approach in [50] to build the non-IID datasets. (1) 20NEWS
(IID) [44] dataset is a collection of approximately 20,000 news-
group documents. (2) AGNEWS (non-IID) [92] is a collection
of 127.6K news articles gathered from more than 2,000 news
sources. (3) SEMEVAL (non-IID) [31] is a relation classi�ca-
tion datasets which assigns prede�ned relation labels to the

8

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

Device Processor Per-batch
Latency (s)

Jetson TX2 [1] 256-core NVIDIA Pascal™ GPU. 0.88
Jetson Nano [2] 128-core NVIDIA CUDA® GPU. 1.89

RPI 4B [3] Broadcom BCM2711B0 quad-core
A72 64-bit @ 1.5GHz CPU. 18.27

Table 3: Development boards used in experiments.

Computation and storage cost analysis Using activa-
tion caching reduces the computations by 3B?;8C/⇡ at the for-
ward pass. Yet it also takes extra storage, i.e., B4@;4= ⇥= ⇥⌫(
per batch, where = is the transformer’s internal feature size
(default 768), and ⌫(is the batch size (default 4). The cache is
reloaded from disk per minibatch, taking no more than tens
of ms on embedded �ash and incurs less than 2% overhead.
The total cache size is also proportional to the number of
batches samples per client (typically dozens). Assuming 100
training samples, the storage cost is calculated to be around
100MB. Such cost is no more than 1% of the storage of a
modern mobile/embedded device, e.g., tens to hundreds of
GBs. The cache can be cleared once the FL process �nishes.

5 IMPLEMENTATION AND SETUPS
Wehave fully implemented the AdaFL prototype atop FedNLP
[50] (the SOTA framework to evaluate FL methods on NLP
tasks) and Adapterhub [58] (a library that facilitates the
integration of pre-trained adapters for di�erent tasks). As
prior work [13], we adopt the parameter server (PS) architec-
ture among the clients and central server. At the server side,
once job is submitted by the developer, the server initial-
izes the pluggable meta adapter to be trained (through the
API of Adapterhub) into the pre-trained model. The server
also splits the initialized meta adapter into three branches:
normal, wider and deeper. The wider branch will stack a
few meta adapters parallel to expand the bottleneck size of
adapter in single layer. The deeper branch will insert the
meta adapter into one more deeper layer. A client selector
will sample 3N clients from available devices and shu�e
them into 3 groups. We now employ a random client selec-
tor (default in most FL literature) but more advanced selec-
tion strategies [43, 46–48, 55, 81, 86, 93] can be plugged into
our implementation as well. Then, the server sends three
branches of adapters to three groups separately via MPI (in
standalone mode) or WLAN/Cellular (in distributed mode).
Once receiving the adapters, the clients insert the adapter
into their local pre-trained model. They �ne-tune the model
with their own private data. The trained adapters will be col-
lected in the central server and aggregated through FedAvg
algorithm [54]. All clients run in synchronized mode [32].

Metrics We mainly report the time-to-accuracy metric.
We divide the dataset of each device for training (80%) and

Task Dataset # of Clients Labels Non-IID Samples

TC 20NEWS [44] 100 20 / 18.8k
TC AGNEWS [92] 1,000 4 a=10 127.6k
TC SEMEVAL [31] 100 19 a=100 10.7k
ST ONTONOTES [60] 600 37 a=10 5.5k

Table 4: Datasets and settings used in experiments for
Text Classi�cation and Sequence Tagging. “a” is a pa-
rameter that controls the datasets’ non-IID level [50].

testing (20%). For clarity, we pay attention to a few typi-
cal accuracy targets, e.g., 99%, 95%, 90% of the full conver-
gence accuracy achievable by the baseline that �ne-tunes the
whole model. We refer to those accuracy numbers as relative
target accuracy. For example, the 100% relative target accu-
racy of BERT is 0.8 (accuracy) for 20NEWS; 0.9 (accuracy) for
AGNews; 0.8 (accuracy) for SEMEVAL; and 0.75 (token-F1) for
ONTONOTES. We also report the resource cost in an FL process,
including the total energy consumption on data transmitting
and training computation on each client; the total amount
of network tra�c; and the peak memory usage.

HardwareAs prior FL literature [43, 46, 48, 50, 70], our ex-
periments are carried out in an emulation manner on a GPU
server with 8x NVIDIA A40. The on-device training time is
obtained on 3 development boards with similar hardware
capacity to mainstream mobile devices, i.e., Jetson TX2 [1],
Jetson Nano [2], and Raspberry Pi 4B [3]. The numbers are
then plugged into the emulation framework to calculate the
elapsed time. The default network bandwidth between clients
and server is set to 1MB/s, a typical setting for mobile and
IoT devices [4, 25]. Note that while home/o�ce WiFi down-
link could be faster, the uplink bandwidth is often bound
by the broadband backbone [37]. In §6.1, we will also quan-
tify the performance of AdaFL under various hardware and
bandwidth settings (100KB/s–10MB/s).

Models We use two representative models for FedNLP
tasks: BERT [21] (default) and its varient DistilBERT [67].
BERT and DistilBERT are composed of 12 and 6 transformer
blocks, respectively. DistilBERT leverages knowledge distil-
lation during the pre-training phase and reduces the size of a
BERT model by 40%, while retaining 97% of its language un-
derstanding capabilities and being 60% faster. We use BERT
for most of our experiments, as all BERT-based variants de-
rive from it. The pre-trained weights of both models are
downloaded directly from Hugging Face [84].

Tasks and datasets We evaluate AdaFL on 4 classic NLP
downstream datasets as shown in Table 4. We follow the
approach in [50] to build the non-IID datasets. (1) 20NEWS
(IID) [44] dataset is a collection of approximately 20,000 news-
group documents. (2) AGNEWS (non-IID) [92] is a collection
of 127.6K news articles gathered from more than 2,000 news
sources. (3) SEMEVAL (non-IID) [31] is a relation classi�ca-
tion datasets which assigns prede�ned relation labels to the

8

24/30

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Datasets 20NEWS AGNEWS SEMEVAL ONTONOTES

Relative Accuracy 99% 95% 90% 99% 95% 90% 99% 95% 90% 99% 95% 90%
FT 44.0 23.4 13.1 31.1 10.1 5.2 124.3 89.9 61.7 76.1 55.9 35.6
FTQ 12.7 6.8 3.8 9.1 2.6 1.7 32.0 23.1 15.9 21.2 15.5 9.9

LF>A02;4 18.5 8.1 4.3 9.6 1.4 1.1 74.0 46.8 33.2 82.5 43.8 24.5
LFQ>A02;4 5.2 2.5 1.1 1.6 0.3 0.2 16.8 11.0 7.7 23.9 12.9 7.2
AdaFL 1.3 0.4 0.1 0.2 0.03 0.02 2.3 1.1 0.6 4.5 2.4 1.3

Table 5: Elapsed training time taken to reach di�erent relative target accuracy. NLP model: BERT. Unit: Hour.

(a) BERT

(b) DistilBERT

Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence signi�cantly.

(a) 20NEWS (b) SEMEVAL
Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

is common [86]. AdaFL enables a stable �ne-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 81] that will
drag the NLP �ne-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with di�erent device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8⇥ and 79.2⇥ faster than the VanilaFT on 20NEWS

and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8⇥ and 7.0⇥, respectively. This is

(a) 20NEWS

(b) SEMEVAL
Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,

10

Evaluation: End-to-end Performance

• Our system reduces model convergence delays significantly.

260×

Table 1: Elapsed training time taken to reach different relative target
accuracy. NLP model: BERT-base. Unit: Hour.

25/30

Evaluation: System Scalability

• Our system outperforms baselines Our systemrious network environments
• It outperforms baselines on various client hardware.

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Datasets 20NEWS AGNEWS SEMEVAL ONTONOTES

Relative Accuracy 99% 95% 90% 99% 95% 90% 99% 95% 90% 99% 95% 90%
FT 44.0 23.4 13.1 31.1 10.1 5.2 124.3 89.9 61.7 76.1 55.9 35.6
FTQ 12.7 6.8 3.8 9.1 2.6 1.7 32.0 23.1 15.9 21.2 15.5 9.9

LF>A02;4 18.5 8.1 4.3 9.6 1.4 1.1 74.0 46.8 33.2 82.5 43.8 24.5
LFQ>A02;4 5.2 2.5 1.1 1.6 0.3 0.2 16.8 11.0 7.7 23.9 12.9 7.2
AdaFL 1.3 0.4 0.1 0.2 0.03 0.02 2.3 1.1 0.6 4.5 2.4 1.3

Table 5: Elapsed training time taken to reach di�erent relative target accuracy. NLP model: BERT. Unit: Hour.

(a) BERT

(b) DistilBERT

Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence signi�cantly.

(a) 20NEWS (b) SEMEVAL
Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

is common [86]. AdaFL enables a stable �ne-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 81] that will
drag the NLP �ne-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with di�erent device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8⇥ and 79.2⇥ faster than the VanilaFT on 20NEWS

and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8⇥ and 7.0⇥, respectively. This is

(a) 20NEWS

(b) SEMEVAL
Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,

10

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Datasets 20NEWS AGNEWS SEMEVAL ONTONOTES

Relative Accuracy 99% 95% 90% 99% 95% 90% 99% 95% 90% 99% 95% 90%
FT 44.0 23.4 13.1 31.1 10.1 5.2 124.3 89.9 61.7 76.1 55.9 35.6
FTQ 12.7 6.8 3.8 9.1 2.6 1.7 32.0 23.1 15.9 21.2 15.5 9.9

LF>A02;4 18.5 8.1 4.3 9.6 1.4 1.1 74.0 46.8 33.2 82.5 43.8 24.5
LFQ>A02;4 5.2 2.5 1.1 1.6 0.3 0.2 16.8 11.0 7.7 23.9 12.9 7.2
AdaFL 1.3 0.4 0.1 0.2 0.03 0.02 2.3 1.1 0.6 4.5 2.4 1.3

Table 5: Elapsed training time taken to reach di�erent relative target accuracy. NLP model: BERT. Unit: Hour.

(a) BERT

(b) DistilBERT

Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence signi�cantly.

(a) 20NEWS (b) SEMEVAL
Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

is common [86]. AdaFL enables a stable �ne-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 81] that will
drag the NLP �ne-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with di�erent device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8⇥ and 79.2⇥ faster than the VanilaFT on 20NEWS

and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8⇥ and 7.0⇥, respectively. This is

(a) 20NEWS

(b) SEMEVAL
Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,

10

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Datasets 20NEWS AGNEWS SEMEVAL ONTONOTES

Relative Accuracy 99% 95% 90% 99% 95% 90% 99% 95% 90% 99% 95% 90%
FT 44.0 23.4 13.1 31.1 10.1 5.2 124.3 89.9 61.7 76.1 55.9 35.6
FTQ 12.7 6.8 3.8 9.1 2.6 1.7 32.0 23.1 15.9 21.2 15.5 9.9

LF>A02;4 18.5 8.1 4.3 9.6 1.4 1.1 74.0 46.8 33.2 82.5 43.8 24.5
LFQ>A02;4 5.2 2.5 1.1 1.6 0.3 0.2 16.8 11.0 7.7 23.9 12.9 7.2
AdaFL 1.3 0.4 0.1 0.2 0.03 0.02 2.3 1.1 0.6 4.5 2.4 1.3

Table 5: Elapsed training time taken to reach di�erent relative target accuracy. NLP model: BERT. Unit: Hour.

(a) BERT

(b) DistilBERT

Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence signi�cantly.

(a) 20NEWS (b) SEMEVAL
Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

is common [86]. AdaFL enables a stable �ne-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 81] that will
drag the NLP �ne-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with di�erent device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8⇥ and 79.2⇥ faster than the VanilaFT on 20NEWS

and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8⇥ and 7.0⇥, respectively. This is

(a) 20NEWS

(b) SEMEVAL
Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,

10

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Datasets 20NEWS AGNEWS SEMEVAL ONTONOTES

Relative Accuracy 99% 95% 90% 99% 95% 90% 99% 95% 90% 99% 95% 90%
FT 44.0 23.4 13.1 31.1 10.1 5.2 124.3 89.9 61.7 76.1 55.9 35.6
FTQ 12.7 6.8 3.8 9.1 2.6 1.7 32.0 23.1 15.9 21.2 15.5 9.9

LF>A02;4 18.5 8.1 4.3 9.6 1.4 1.1 74.0 46.8 33.2 82.5 43.8 24.5
LFQ>A02;4 5.2 2.5 1.1 1.6 0.3 0.2 16.8 11.0 7.7 23.9 12.9 7.2
AdaFL 1.3 0.4 0.1 0.2 0.03 0.02 2.3 1.1 0.6 4.5 2.4 1.3

Table 5: Elapsed training time taken to reach di�erent relative target accuracy. NLP model: BERT. Unit: Hour.

(a) BERT

(b) DistilBERT

Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence signi�cantly.

(a) 20NEWS (b) SEMEVAL
Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

is common [86]. AdaFL enables a stable �ne-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 81] that will
drag the NLP �ne-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with di�erent device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8⇥ and 79.2⇥ faster than the VanilaFT on 20NEWS

and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8⇥ and 7.0⇥, respectively. This is

(a) 20NEWS

(b) SEMEVAL
Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,

10

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Datasets 20NEWS AGNEWS SEMEVAL ONTONOTES

Relative Accuracy 99% 95% 90% 99% 95% 90% 99% 95% 90% 99% 95% 90%
FT 44.0 23.4 13.1 31.1 10.1 5.2 124.3 89.9 61.7 76.1 55.9 35.6
FTQ 12.7 6.8 3.8 9.1 2.6 1.7 32.0 23.1 15.9 21.2 15.5 9.9

LF>A02;4 18.5 8.1 4.3 9.6 1.4 1.1 74.0 46.8 33.2 82.5 43.8 24.5
LFQ>A02;4 5.2 2.5 1.1 1.6 0.3 0.2 16.8 11.0 7.7 23.9 12.9 7.2
AdaFL 1.3 0.4 0.1 0.2 0.03 0.02 2.3 1.1 0.6 4.5 2.4 1.3

Table 5: Elapsed training time taken to reach di�erent relative target accuracy. NLP model: BERT. Unit: Hour.

(a) BERT

(b) DistilBERT

Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence signi�cantly.

(a) 20NEWS (b) SEMEVAL
Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

is common [86]. AdaFL enables a stable �ne-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 81] that will
drag the NLP �ne-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with di�erent device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8⇥ and 79.2⇥ faster than the VanilaFT on 20NEWS

and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8⇥ and 7.0⇥, respectively. This is

(a) 20NEWS

(b) SEMEVAL
Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,

10

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Datasets 20NEWS AGNEWS SEMEVAL ONTONOTES

Relative Accuracy 99% 95% 90% 99% 95% 90% 99% 95% 90% 99% 95% 90%
FT 44.0 23.4 13.1 31.1 10.1 5.2 124.3 89.9 61.7 76.1 55.9 35.6
FTQ 12.7 6.8 3.8 9.1 2.6 1.7 32.0 23.1 15.9 21.2 15.5 9.9

LF>A02;4 18.5 8.1 4.3 9.6 1.4 1.1 74.0 46.8 33.2 82.5 43.8 24.5
LFQ>A02;4 5.2 2.5 1.1 1.6 0.3 0.2 16.8 11.0 7.7 23.9 12.9 7.2
AdaFL 1.3 0.4 0.1 0.2 0.03 0.02 2.3 1.1 0.6 4.5 2.4 1.3

Table 5: Elapsed training time taken to reach di�erent relative target accuracy. NLP model: BERT. Unit: Hour.

(a) BERT

(b) DistilBERT

Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence signi�cantly.

(a) 20NEWS (b) SEMEVAL
Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

is common [86]. AdaFL enables a stable �ne-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 81] that will
drag the NLP �ne-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with di�erent device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8⇥ and 79.2⇥ faster than the VanilaFT on 20NEWS

and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8⇥ and 7.0⇥, respectively. This is

(a) 20NEWS

(b) SEMEVAL
Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,

10

112.5×

9.2×

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Datasets 20NEWS AGNEWS SEMEVAL ONTONOTES

Relative Accuracy 99% 95% 90% 99% 95% 90% 99% 95% 90% 99% 95% 90%
FT 44.0 23.4 13.1 31.1 10.1 5.2 124.3 89.9 61.7 76.1 55.9 35.6
FTQ 12.7 6.8 3.8 9.1 2.6 1.7 32.0 23.1 15.9 21.2 15.5 9.9

LF>A02;4 18.5 8.1 4.3 9.6 1.4 1.1 74.0 46.8 33.2 82.5 43.8 24.5
LFQ>A02;4 5.2 2.5 1.1 1.6 0.3 0.2 16.8 11.0 7.7 23.9 12.9 7.2
AdaFL 1.3 0.4 0.1 0.2 0.03 0.02 2.3 1.1 0.6 4.5 2.4 1.3

Table 5: Elapsed training time taken to reach di�erent relative target accuracy. NLP model: BERT. Unit: Hour.

(a) BERT

(b) DistilBERT

Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence signi�cantly.

(a) 20NEWS (b) SEMEVAL
Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

is common [86]. AdaFL enables a stable �ne-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 81] that will
drag the NLP �ne-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with di�erent device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8⇥ and 79.2⇥ faster than the VanilaFT on 20NEWS

and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8⇥ and 7.0⇥, respectively. This is

(a) 20NEWS

(b) SEMEVAL
Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,

10

79.2×

Fig. 1: Model convergence delays under
different network bandwidths. Training
targets 99% relative target accuracy.

Fig. 2: Model convergence delays with a variety of client hardware.
‘Heterogenous’ means a mixture of heterogeneous hardware
capacity.

48.3× 7.0× 15.7×

26/30

Evaluation: Key deign

• Our key designs contribute to the results significantly.

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

Resource-E�icient Federated Learning for Modern NLP MobiCom ’23, Oct 09-12, 2023, Madrid, Spain

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

Figure 8: Model convergence delays with and without
AdaFL’s key designs, showing their signi�cance

(a) 20NEWS (b) SEMEVAL
Figure 9: Time-to-accuracy throughout a training ses-
sion. AdaFL’s accuracy (red lines) always outperforms
those of �xed adapter con�guration (208 in total, ag-
gregated as blue shades, for which blue dotted lines
show averages)

AdaFL reaches target accuracy 5.03⇥ and 3.25⇥ faster than
the four baselines, respectively. Moreover, AdaFL also shows
improvement under heterogeneous settings, where the de-
vice capacity is assumed to be uniformly distributed between
Jetson TX2, Jetson Nano and RPI 4B. The pro�t is not as
signi�cant as on high-end devices because the per-round
training is bottlenecked by the slower devices [64]. Exten-
sive research e�orts have been invested to mitigate straggler
issue [43, 46, 48, 55, 81, 86, 93] and AdaFL is orthogonal to
those techniques.

6.2 Signi�cance of Key Designs
The bene�ts of AdaFL come from: the adapters (§3.1), the ac-
tivation cache (§4), the automatic adapter con�guration and
trial-and-error clients (§3.3). We now quantify their bene�ts.

Adapter and caching. Figure 8 shows bene�t of adapters
and caching. Naive use of adapters, e.g. inserting at all lay-
ers, may brings notable bene�t, e.g., on Jetson TX2 and
benchmark AGNEWS, Vanilla-Adapter is 10.1⇥ faster than
FT. However, the delays are still too high. On RPI 4B, naive
use of adapters slows down the model convergence as com-
pared to �ne-tuning the whole model. By using one static,
oracle adapter con�guration (Adapter>A02;4), the time-to-
accuracy is reduced by up tp 23.0⇥ compared to FT. Employ-
ing the activation cache technique (Adapter>A02;4+Cache)
further brings 2.1⇥–3.3⇥ speedup. In another micro exper-
iment, Figure 10 shows that, with activation caching, the
training time decreases almost linearly with fewer adapter
layers to be updated (⇡ � 3B?;8C), and the improvement from
caching mechanism increases signi�cantly as well.

Figure 10: Per-batch
training time with/with-
out activation caching.
Model: DistilBERT.
Device: Jetson TX2.

Figure 11: Model con-
verge timewith di�erent
client numbers. Dataset:
20NEWS. Model: BERT. De-
vice: Jetson TX2.

Figure 12: Total network tra�c of all client devices.
Training targets 99% relative target accuracy.

Automatic con�guration To demonstrate the impor-
tance of AdaFL’s upgrading mechanism on the adapter’s
tuning con�guration, we exhaustively sweep through all
adapter con�gurations (depth 0–12, width 8,16,..,128, 208
con�gurations in total) of BERT on 20NEWS, and aggregate
their convergence curves as shaded areas shown in Figure 9.
The blue line (dotted) is the average time-to-accuracy of all
con�gurations while the red line (solid) is the curve of AdaFL.
Note that sweeping all con�gurations is very expensive: it
takes thousands of GPU hours to run the benchmark in a
sub�gure. The results show that AdaFL almost outperforms
every con�guration throughout a training session. This is
owing to AdaFL switching among di�erent con�gurations
that best suits the current training session. Typically, we
observe AdaFL uses 8–14 con�gurations per training session.

Investment of extra clients AdaFL uses more clients to
identify whether it shall upgrade to a more complex adapter
con�guration through trial and error. We evaluate the perfor-
mance of AdaFL with di�erent client numbers as compared
to VanillaFT. As show in Figure 11, VanillaFT achieves the
best performance with 6 participant clients per round. On
the other hand, using the extra clients for trial-and-error is
much more bene�cial, i.e., better scalability to the available
clients.

6.3 Client Resource Cost
Network tra�c. Figure 12 reports the total network tra�c
incurred during �ne-tuning to reach 99% relative target accu-
racy. It shows that AdaFL saves 126.7⇥ on average and up to

11

Fig. 1: Model convergence delays with and without our system’s key designs, showing their significance.

10.1×

2.3×

2.1×

7.1×

1.3×

3.3×

1.2×1.1×

3.5×

~
1.7×

2.4×

27/30

Evaluation: System Cost

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

Resource-E�icient Federated Learning for Modern NLP MobiCom ’23, Oct 09-12, 2023, Madrid, Spain

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

Figure 8: Model convergence delays with and without
AdaFL’s key designs, showing their signi�cance

(a) 20NEWS (b) SEMEVAL
Figure 9: Time-to-accuracy throughout a training ses-
sion. AdaFL’s accuracy (red lines) always outperforms
those of �xed adapter con�guration (208 in total, ag-
gregated as blue shades, for which blue dotted lines
show averages)

AdaFL reaches target accuracy 5.03⇥ and 3.25⇥ faster than
the four baselines, respectively. Moreover, AdaFL also shows
improvement under heterogeneous settings, where the de-
vice capacity is assumed to be uniformly distributed between
Jetson TX2, Jetson Nano and RPI 4B. The pro�t is not as
signi�cant as on high-end devices because the per-round
training is bottlenecked by the slower devices [64]. Exten-
sive research e�orts have been invested to mitigate straggler
issue [43, 46, 48, 55, 81, 86, 93] and AdaFL is orthogonal to
those techniques.

6.2 Signi�cance of Key Designs
The bene�ts of AdaFL come from: the adapters (§3.1), the ac-
tivation cache (§4), the automatic adapter con�guration and
trial-and-error clients (§3.3). We now quantify their bene�ts.

Adapter and caching. Figure 8 shows bene�t of adapters
and caching. Naive use of adapters, e.g. inserting at all lay-
ers, may brings notable bene�t, e.g., on Jetson TX2 and
benchmark AGNEWS, Vanilla-Adapter is 10.1⇥ faster than
FT. However, the delays are still too high. On RPI 4B, naive
use of adapters slows down the model convergence as com-
pared to �ne-tuning the whole model. By using one static,
oracle adapter con�guration (Adapter>A02;4), the time-to-
accuracy is reduced by up tp 23.0⇥ compared to FT. Employ-
ing the activation cache technique (Adapter>A02;4+Cache)
further brings 2.1⇥–3.3⇥ speedup. In another micro exper-
iment, Figure 10 shows that, with activation caching, the
training time decreases almost linearly with fewer adapter
layers to be updated (⇡ � 3B?;8C), and the improvement from
caching mechanism increases signi�cantly as well.

Figure 10: Per-batch
training time with/with-
out activation caching.
Model: DistilBERT.
Device: Jetson TX2.

Figure 11: Model con-
verge timewith di�erent
client numbers. Dataset:
20NEWS. Model: BERT. De-
vice: Jetson TX2.

Figure 12: Total network tra�c of all client devices.
Training targets 99% relative target accuracy.

Automatic con�guration To demonstrate the impor-
tance of AdaFL’s upgrading mechanism on the adapter’s
tuning con�guration, we exhaustively sweep through all
adapter con�gurations (depth 0–12, width 8,16,..,128, 208
con�gurations in total) of BERT on 20NEWS, and aggregate
their convergence curves as shaded areas shown in Figure 9.
The blue line (dotted) is the average time-to-accuracy of all
con�gurations while the red line (solid) is the curve of AdaFL.
Note that sweeping all con�gurations is very expensive: it
takes thousands of GPU hours to run the benchmark in a
sub�gure. The results show that AdaFL almost outperforms
every con�guration throughout a training session. This is
owing to AdaFL switching among di�erent con�gurations
that best suits the current training session. Typically, we
observe AdaFL uses 8–14 con�gurations per training session.

Investment of extra clients AdaFL uses more clients to
identify whether it shall upgrade to a more complex adapter
con�guration through trial and error. We evaluate the perfor-
mance of AdaFL with di�erent client numbers as compared
to VanillaFT. As show in Figure 11, VanillaFT achieves the
best performance with 6 participant clients per round. On
the other hand, using the extra clients for trial-and-error is
much more bene�cial, i.e., better scalability to the available
clients.

6.3 Client Resource Cost
Network tra�c. Figure 12 reports the total network tra�c
incurred during �ne-tuning to reach 99% relative target accu-
racy. It shows that AdaFL saves 126.7⇥ on average and up to

11

Our system is resource-efficient.
• It saves up to 220.7× network traffic. (Fig. 1)
• It reduces up to 32.2× energy consumption. (Fig. 2)
• It nontrivially reduces the memory usage. (Fig. 3)

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

Figure 13: Per-client average energy consumption,
normalized to that of AdaFL. Training targets 99% rela-
tive target accuracy.

(a) DistilBERT (b) BERT
Figure 14: Peak memory usage of a client device.

220.7⇥ (reducing from 2194.3 GB to 9.9 GB) network tra�c
compared to the FT on dataset 20NEWS. Note that reducing
the network tra�c not only speeds up the convergence, but
also mitigates the overhead on clients and the monetary cost
to FL developers, which is billed by the amount of data trans-
mitted on public cloud platforms, e.g., $0.01/GB on AWS [5].

Energy consumption. Figure 13 illustrates the average
energy consumed during FedNLP tasks on each device. It
shows that AdaFL saves the energy consumption remark-
ably, e.g., 1.3⇥–3.7⇥ reduction compared to LFQ$A02;4 and
3.1⇥–32.1⇥ reduction compared to FT, respectively. Such
improvement comes from both the reduced network trans-
mission time and the on-device training computations.

Memory footprint Figure 14 reports the peak memory
footprint when �ne-tuning on BERT and DistilBERT with
di�erent tuning depths. It shows that AdaFL nontrivially re-
duces the memory usage either with shallow or deep tuning
depth. The reasons are twofold. First, AdaFL only updates
the parameters of a few adapters, so the gradients of other
parameters are not calculated and the associated activations
do not need to be stored. Second, our activation caching
technique avoids storing the unneeded parameters.

7 RELATEDWORK
Fine-tuning (transfer learning) Inductive transfer learn-
ing has greatly advanced NLP research. Howard et al. pro-
pose ULMFiT [35], a universal transfer learning method
matching the performance of training from scratch. BERT [21]
was then introduced and becomes a standard pre-trained
model in many NLP downstream tasks for its superior per-
formance and generality. Numerous variants [9, 21, 33, 51, 67,
74, 78, 90] of BERT have since been designed. For instance,

Sun et al. explore the space of strategies for �ne-tuning BERT
for text classi�cation [73]. This work is motivated by those
work and speci�cally targets FedNLP scenario.
FedNLP is a key step towards the adoption of NLPmodels in
practice. However, there is very few literature investigating
its implications at system aspect. [50] is the �rst research
benchmark for FedNLP tasks and integrates representative
language datasets. AdaFL is built atop it and treats it as a
baseline. SEFL [20] is a FedNLP framework that achieves
data privacy without any trusted entities. [10] studies how
FedNLP can orchestrate with di�erential privacy. None of
above work addresses the high training cost of FedNLP.
Adapters Adapter is extensively studied to achieve param-
eter e�ciency in continuous learning tasks. It was �rst in-
troduced for vision tasks [62]. The rationale is to encode
task-speci�c representations in intermediate layers while
preserving the knowledge learned from the pre-training
dataset [57]. Various adapter variants have been proposed to
tradeo� trainable parameter numbers and training accuracy
in NLP tasks [29, 49, 53, 59, 75]. Despite the popularity, the
implications of adapter in FedNLP tasks have not been well
examined. For the �rst time, we treat adapter as a building
block to address the training performance issue in FedNLP.
Optimizations for FL Due to the decentralized nature,
communication has been recognized as a major bottleneck
in FL tasks [13, 89]. Various optimizations [12, 47, 80, 82, 85]
have been proposed. Among them, model compression/quan-
tization [12, 85] is the mostly adopted and is directly com-
pared in this work. Apart from network transmission, data
and device heterogeneity [63] are also unique challenges
introduced in FL. To mitigate the heterogeneity of client
devices (therefore stragglers), Abdelmoniem et al. [7] ask
each client device to quantize their local model adaptively.
Hermes [46] guides di�erent mobile clients to �nd a small
subnetwork through structured pruning for local training.
Another line of those work focus on intelligent client se-
lection and data sampling [43, 46–48, 55, 81, 86, 93]. AdaFL
instead takes the �rst fundamental step towards practical
FedNLP, and is compatible with above techniques.

8 CONCLUSIONS
AdaFL is a federated learning framework for fast NLP model
�ne-tuning. AdaFL borrows the wisdom from prior work
and uses adapter as the only trainable module in NLP model
to reduce the training cost. To identify the optimal adapter
con�guration on the �y, AdaFL integrates a progressive train-
ing paradigm and trail-and-error pro�ling technique. AdaFL
shows superior training speedup over existing approaches
through our extensive experiments.

12

Fig. 1: Network traffic (downlink and uplink) of
all 15 client devices.

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

MobiCom ’23, Oct 09-12, 2023, Madrid, Spain Anon.

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

Figure 13: Per-client average energy consumption,
normalized to that of AdaFL. Training targets 99% rela-
tive target accuracy.

(a) DistilBERT (b) BERT
Figure 14: Peak memory usage of a client device.

220.7⇥ (reducing from 2194.3 GB to 9.9 GB) network tra�c
compared to the FT on dataset 20NEWS. Note that reducing
the network tra�c not only speeds up the convergence, but
also mitigates the overhead on clients and the monetary cost
to FL developers, which is billed by the amount of data trans-
mitted on public cloud platforms, e.g., $0.01/GB on AWS [5].

Energy consumption. Figure 13 illustrates the average
energy consumed during FedNLP tasks on each device. It
shows that AdaFL saves the energy consumption remark-
ably, e.g., 1.3⇥–3.7⇥ reduction compared to LFQ$A02;4 and
3.1⇥–32.1⇥ reduction compared to FT, respectively. Such
improvement comes from both the reduced network trans-
mission time and the on-device training computations.

Memory footprint Figure 14 reports the peak memory
footprint when �ne-tuning on BERT and DistilBERT with
di�erent tuning depths. It shows that AdaFL nontrivially re-
duces the memory usage either with shallow or deep tuning
depth. The reasons are twofold. First, AdaFL only updates
the parameters of a few adapters, so the gradients of other
parameters are not calculated and the associated activations
do not need to be stored. Second, our activation caching
technique avoids storing the unneeded parameters.

7 RELATEDWORK
Fine-tuning (transfer learning) Inductive transfer learn-
ing has greatly advanced NLP research. Howard et al. pro-
pose ULMFiT [35], a universal transfer learning method
matching the performance of training from scratch. BERT [21]
was then introduced and becomes a standard pre-trained
model in many NLP downstream tasks for its superior per-
formance and generality. Numerous variants [9, 21, 33, 51, 67,
74, 78, 90] of BERT have since been designed. For instance,

Sun et al. explore the space of strategies for �ne-tuning BERT
for text classi�cation [73]. This work is motivated by those
work and speci�cally targets FedNLP scenario.
FedNLP is a key step towards the adoption of NLPmodels in
practice. However, there is very few literature investigating
its implications at system aspect. [50] is the �rst research
benchmark for FedNLP tasks and integrates representative
language datasets. AdaFL is built atop it and treats it as a
baseline. SEFL [20] is a FedNLP framework that achieves
data privacy without any trusted entities. [10] studies how
FedNLP can orchestrate with di�erential privacy. None of
above work addresses the high training cost of FedNLP.
Adapters Adapter is extensively studied to achieve param-
eter e�ciency in continuous learning tasks. It was �rst in-
troduced for vision tasks [62]. The rationale is to encode
task-speci�c representations in intermediate layers while
preserving the knowledge learned from the pre-training
dataset [57]. Various adapter variants have been proposed to
tradeo� trainable parameter numbers and training accuracy
in NLP tasks [29, 49, 53, 59, 75]. Despite the popularity, the
implications of adapter in FedNLP tasks have not been well
examined. For the �rst time, we treat adapter as a building
block to address the training performance issue in FedNLP.
Optimizations for FL Due to the decentralized nature,
communication has been recognized as a major bottleneck
in FL tasks [13, 89]. Various optimizations [12, 47, 80, 82, 85]
have been proposed. Among them, model compression/quan-
tization [12, 85] is the mostly adopted and is directly com-
pared in this work. Apart from network transmission, data
and device heterogeneity [63] are also unique challenges
introduced in FL. To mitigate the heterogeneity of client
devices (therefore stragglers), Abdelmoniem et al. [7] ask
each client device to quantize their local model adaptively.
Hermes [46] guides di�erent mobile clients to �nd a small
subnetwork through structured pruning for local training.
Another line of those work focus on intelligent client se-
lection and data sampling [43, 46–48, 55, 81, 86, 93]. AdaFL
instead takes the �rst fundamental step towards practical
FedNLP, and is compatible with above techniques.

8 CONCLUSIONS
AdaFL is a federated learning framework for fast NLP model
�ne-tuning. AdaFL borrows the wisdom from prior work
and uses adapter as the only trainable module in NLP model
to reduce the training cost. To identify the optimal adapter
con�guration on the �y, AdaFL integrates a progressive train-
ing paradigm and trail-and-error pro�ling technique. AdaFL
shows superior training speedup over existing approaches
through our extensive experiments.

12

Fig. 2: Per-client average energy consumption,
normalized to that of ours.Fig. 3: Peak memory usage of a client device.

28/30

Conclusion
• Our system is a federated learning framework for fast NLP model fine-

tuning.
• It uses adapter as the only trainable module in NLP model to reduce

the training cost.
• To identify the optimal adapter configuration on the fly, it integrates a

progressive training paradigm and trail-and-error profiling technique.
• It can reduce FedNLP’s model convergence delay to no more than

several hours, which is up to 155× faster compared to vanilla FedNLP
and 48× faster compared to strong baselines.

29/30

Conclusion
• Our system is a federated learning framework for fast NLP model fine-

tuning.
• It uses adapter as the only trainable module in NLP model to reduce

the training cost.
• To identify the optimal adapter configuration on the fly, it integrates a

progressive training paradigm and trail-and-error profiling technique.
• It can reduce FedNLP’s model convergence delay to no more than

several hours, which is up to 155× faster compared to vanilla FedNLP
and 48× faster compared to strong baselines.

Thanks for listening!

Scan for our code!

<Efficient Federated Learning for Modern NLP>
Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

30/30

