
Article https://doi.org/10.1038/s41467-025-60802-5

Ubiquitous memory augmentation via
mobile multimodal embedding system

Dongqi Cai 1,2, Shangguang Wang 1 , Chen Peng 1, Zeling Zhang 1,
Zhenyan Lu1,3, Tao Qi 1, Nicholas D. Lane 2,4 & Mengwei Xu 1

Forgetting is inevitable in human memory. Recently, multimodal embedding
models have been proposed to vectorize multimodal reality into a unified
embedding space. Once generated, these embeddings allow mobile users to
quickly retrieve relevant information, effectively augmenting their memory.
However, as the model’s capacity increases, its resource consumption also
rises. The resulting slow throughput and significant computational resource
requirements hinder its deployment on mobile devices. In this paper, we
present Reminisce, an efficient on-device multimodal embedding system that
enables high-throughput embedding and precise retrieval on resource-
constrained mobile devices. The core design draws inspiration from the
memory functions of the human brain, utilizing coarse-grained embeddings to
identify likely candidates, which are then refined through query-driven fine-
grained retrieval. A series of algorithm-hardware orchestrated optimizations
automatically navigates this process and strengthen the embedding quality.
Experiments show that Reminisce provides high-quality embedding repre-
sentation with high throughput while operating silently in the background
with negligible memory usage and reduced energy consumption.

Mobile devices are ubiquitous nowadays. They capture lots of data in
users’ daily usage, digitally chronicling every aspect of a person’s life.
However, suchdata hasnot been fully utilized, attributed not to how to
store them, but how to accurately retrieve them1. Specifically, smart-
phones have abundant storage (up to 1TB for iPhone 15 Pro) to host the
information captured at 24 × 7, or local network-attached storage can
help accommodate those data as well; yet there has been a lack of
method to efficiently locate the data intended at query time2,3. The
fundamental challenge is that data generated on devices ismultimodal
bynature (e.g., text, image, audio, etc.), which are hard tobe accurately
retrieved in a user-friendly manner, e.g., through natural language4.

Fortunately, the recent development of multimodal embedding
models (MEM) has shed light on multimodal data retrieval. For
example, CLIP unifies text and image modalities into one embedding
space5. ImageBind further extends the functionality to 6 modalities
through contrastive learning6. At architecture level, those models

primarily consist of multi-layer transformer encoders7. In general,
MEMswill catelyze two exciting types of mobile applications as shown
in Fig. 1: (1) cross-modality searching, which allows users to retrieve
data in any modality with user-friendly interface; (2) retrieval-
augmented LLM generation, which first identifies the relevant multi-
modal data (e.g., a picture) in a historical database with user prompt,
and uses it to enhance the LLMgeneration quality, e.g., “in the picture I
took for my kid yesterday, is she wearing a blue skirt or yellow?”.

This work addresses the emerging scenario of on-device multi-
modal embedding, where MEMs operate as a system service on local
devices to embed continuous data streams8–11, functioning like a
memory palace12. The local generation of embeddings is motivated by
user privacy concerns, since MEMs can greatly expand the usage of
devicedata, including screenUIs, recorded voices, etc.Offloading such
information to the cloud may expose it to unauthorized access. For
instance, it was revealed that Apple had been eavesdropping on

Received: 11 January 2025

Accepted: 4 June 2025

Check for updates

1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China. 2Department of Com-
puter Science and Technology, University of Cambridge, Cambridge, UK. 3Pengcheng Laboratory, Shenzhen, China. 4Flower Labs, London, UK.

e-mail: sgwang@bupt.edu.cn; ndl32@cam.ac.uk; mwx@bupt.edu.cn

Nature Communications |         (2025) 16:5339 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2751-2500
http://orcid.org/0000-0003-2751-2500
http://orcid.org/0000-0003-2751-2500
http://orcid.org/0000-0003-2751-2500
http://orcid.org/0000-0003-2751-2500
http://orcid.org/0000-0001-7245-1298
http://orcid.org/0000-0001-7245-1298
http://orcid.org/0000-0001-7245-1298
http://orcid.org/0000-0001-7245-1298
http://orcid.org/0000-0001-7245-1298
http://orcid.org/0009-0009-0103-3457
http://orcid.org/0009-0009-0103-3457
http://orcid.org/0009-0009-0103-3457
http://orcid.org/0009-0009-0103-3457
http://orcid.org/0009-0009-0103-3457
http://orcid.org/0009-0007-3583-5269
http://orcid.org/0009-0007-3583-5269
http://orcid.org/0009-0007-3583-5269
http://orcid.org/0009-0007-3583-5269
http://orcid.org/0009-0007-3583-5269
http://orcid.org/0000-0002-1250-3217
http://orcid.org/0000-0002-1250-3217
http://orcid.org/0000-0002-1250-3217
http://orcid.org/0000-0002-1250-3217
http://orcid.org/0000-0002-1250-3217
http://orcid.org/0000-0002-2728-8273
http://orcid.org/0000-0002-2728-8273
http://orcid.org/0000-0002-2728-8273
http://orcid.org/0000-0002-2728-8273
http://orcid.org/0000-0002-2728-8273
http://orcid.org/0000-0001-6271-6993
http://orcid.org/0000-0001-6271-6993
http://orcid.org/0000-0001-6271-6993
http://orcid.org/0000-0001-6271-6993
http://orcid.org/0000-0001-6271-6993
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60802-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60802-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60802-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-60802-5&domain=pdf
mailto:sgwang@bupt.edu.cn
mailto:ndl32@cam.ac.uk
mailto:mwx@bupt.edu.cn
www.nature.com/naturecommunications


uploaded user conversations to enhance their Siri model13. With cloud-
basedMEMs, users risk comprehensive life surveillance, with noway to
verify.

Despite on-device MEM is private and generalizable to various
downstream tasks6,14–16, it comes at a cost of resource intensity. Spe-
cifically, our pilot experiments identify two key obstacles towards on-
device multimodal embedding: (1) Low embedding throughput. It
takes dozens of seconds for billion-sized MEMs to embed a single
image, which is significantly slower than the rate at which mobile
devices generate data. As a result, even if the device runs continuously
throughout the day, only 20% of daily information can be embedded.
(2) High energy consumption. The slow inference speed, combined
with the immense computing power required, results in high energy
consumption. Embedding data from applications consumes even
more energy than running the applications themselves. As a result, the
battery life ofmobile devices is significantly reduced, often to less than
2 h. Even if the embedding process is batched and executed offline
(e.g., when the device is idle), its substantial resource demands still
hinder practical deployment.

Reminisce is an efficient on-device multimodal embedding sys-
tem. Its key idea is coarse-grained embedding, built upon the early-
exiting technique. It draws inspiration from the top-down predictions
of cognitive brain17. Embeddings from early-exited MEMs serve as
coarse-grained representations to filter likely candidates during
retrieval. These candidates are then refined by the remaining layers at
query time for final selection. While early exiting avoids full model
execution during memorization, three key system challenges remain
on mobile devices: low parallelism, limited exiting benefits, and per-
formance degradation. To further promote the practical deployment
of Reminisce, we propose three software-hardware co-designs: (1)
Data-aware pre-exit predictor is a unified, lightweight early-exit pre-
dictor model applicable across all modalities. It facilitates efficient
batching and pipeline execution, improving encoding throughput; (2)

Progressive LoRA healing retrofits low-rank adaptation (LoRA)18, a
popular parameter-efficient fine-tuning method, to ensure high
retrieval performance with earlier exits by progressively increasing
shared bottom layers. This enables intermediate results to be cached
and reused; (3) Speculative fine-grained retrieval. Query embeddings
from different exits are used for speculative filtering, with top candi-
dates from each granularity undergoing a second matching round for
accurate final retrieval.

Our extensive experiments demonstrate that, with these designs,
Reminisce accelerates the multimodal embedding process while
ensuring accurate retrieval. We evaluate Reminisceon multiple mobile
devices, achieving an average 12.4 × improvement in throughput
compared to the original MEM.We further conduct a case study using
recent Twitter data and a user study based on mobile application
traces collected from eight users over one week, demonstrating the
practicality of Reminisce in real-world scenarios.

Results
Overall framework
As shown in right side of Fig. 1, we prototype an on-device MEM-
powered search service to embed multimodal streaming data for
future retrieval, functioning like a memory palace12. We specifically
target mobile devices, including smartphones and IoT devices with
similar computing capabilities. These devices have usable but weaker
processing units compared to cloud servers, with limited battery and
memory available for long-term background processes19.

From the device perspective, the service has two runtimes:
• Embedding runtime (Offline remembering in the background).
continuously detects and stores newly generated multimodal
content, such as downloaded images, scanned texts, listened-to
audio, and logged IMU sensor data. Each item is processed layer
by layer through MEMs, as deep learning models are often too
large for mobile devices. This can lead the OS to terminate

Fig. 1 | MEM-based ubiquitous memory palace workflow and its instantiation
on mobile devices. MEM encodes multimodal data streams into a unified
embedding space. These embeddings support downstream tasks such as cross-
modality search and retrieval-augmented generation. We instantiate MEM-based

ubiquitous memory palace on mobile devices with an emphasis on resource-
efficient offline embedding to optimize throughput, memory, and energy
consumption.

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 2

www.nature.com/naturecommunications


inference processes. Current mobile inference engines support
layerwise execution to accommodate large models20,21. A 1024-
dimensional embedding is generated for each item in a
unified space.

• Query runtime (Online recall in the foreground). is triggeredwhen
the user searches for a specific itemor performs other tasks based
on search results. To retrieve relevant items, the query embed-
ding is comparedwith stored embeddings to find themost similar
matches. If the raw data corresponding to the matched embed-
dings aligns with the query intent, the query is tagged as
successful.

System developers prepare the embedding model offline, typi-
cally by fine-tuning with powerful cloud GPUs, using widely-used
pretrained multimodal embedding models5,6. They define the expec-
ted offline costs and online performance for each application by
configuring system hyperparameters before deployment.

Preliminary measurements
First, we present a preliminary study to demonstrate the utility and
efficiency of on-devicemultimodal embedding in real-world scenarios.
We conducted a user study to collect viewed images fromdailymobile
applications used by 8 volunteers, aged 20 to 52, over the course of a
week. To achieve this, we developed an Android application with
accessibility services22 to detect and store newly appeared visual
content. Images are hashed to include only new content. Images
smaller than 100KB are excluded to avoid capturing icons and minor
system elements. One collected trace is illustrated in Fig. 2a.

MEMs are observed to be contextually expressive. All images and
corresponding texts are collected and embedded using ImageBind6.
By aligning multimodal embeddings into a unifed space, ImageBind
can effectively retrieve semantically relevant content from different
modalities using human-friendly inputs (Supplementary Fig. 2).

To assess the cost of on-device embedding, we ran ImageBind
inference on four differentmobile devices, ranging from development
boards to commodity smartphones.

Despite their contextually expressive capabilities, the embedding
speed is too slow to keep pace with the figures generated by applica-
tions. As shown in Fig. 2b, on all CPU-based devices, the encoding
speed is insufficient for real-time application use. Over a full day of
usage, the speed is only sufficient to embed 20% of the figures gen-
erated by applications, requiringmore than 100 h to process all figures
from a single day. Even with a GPU, Jetson NANO23 struggles to handle
an entertainment task generating 36.3 images per minute. The only
exception is theNVIDIAORIN24, whichperforms comparably to a cloud
server using anNVIDIA A4025. However, continuously running the CPU
or GPU on mobile devices is impractical due to battery depletion.

The heavy embedding workloads and low throughput strain bat-
tery life. Continuous embedding drains the battery even faster than
running the app itself. To illustrate, we used ImageBind to con-
tinuously embed figures from daily apps. As shown in Fig. 2c, the

embedding process consumesmore energy than the apps themselves.
For example, evenwhen quantized to INT4,MEMs consume 1.8 ×more
energy than gaming. We also measured GPU energy consumption on
an NVIDIA ORIN. While GPUs process data faster, they consume more
energy than CPUs, making them unsuitable for long-term embedding
in the current MEM design.

System designs
As shown in Fig. 3a, the core design of Reminisce is the coarse-grained
embedding, built upon the early-exit mechanism. This approach off-
loads the computation of the full embedding to the less frequent,
intent-specific query phase. Specifically, embeddings generated by
early-exited MEMs serve as coarse-grained embeddings to filter the
most likely candidates during retrieval queries. These candidates are
further refined by the remaining layers of the exited MEMs at query
time to ensure accurate retrieval. We propose and prototype this
mobile-friendly early-exit system for efficient multimodal embedding.
Three hardware-software co-design optimizations further enhance the
performance of Reminisce, making it practical for mobile devices.

The first optimization is data-aware pre-exit prediction. Tradi-
tional early-exit methods determine exits at the end of each branch
computation, causing inconsistent workloads and memory
fragmentation26, and existing predictive models for CNNs cannot
effectively scale to MEM due to their convolution-specific design27,28.
Our observation is thatdifferent data inherently carry varying amounts
of information (Supplementary Fig. 4a), and intermediate multimodal
embeddings provide effective cues for determiningoptimal exit points
(Supplementary Fig. 4b). Based on this unique observation, we pro-
pose a unified, lightweight early-exit predictor that leverages these
intermediate embeddings to preemptively determine the exit layer,
enabling batch scheduling for improved parallelism and amortizing
loading times (Fig. 3b).

The second optimization is progressive LoRA healing. Previous
early-exit healing approaches29 utilize LoRA18 to fine-tune NLP models
for earlier exits. However, these methods fine-tune separate LoRA
modules for each exit, preventing the reuseof intermediate results and
thereby negating early-exit benefits onmobile devices. As illustrated in
Fig. 3c, we propose sharing previously tuned parameters, reducing the
number of layers required per token and enabling reuse of inter-
mediate activations. Based on our observation that sharing LoRA
weights at top layers is more effective (Supplementary Fig. 5), we
propose a progressive LoRA healing method that incrementally
increases tuning depth (number of shared layers) at later exits to
minimize performance degradation from shared LoRA weights.

The third optimizations is speculative fine-grained retrieval).
Using a full-capacity encoder to generate query embeddings leads to
unbalanced retrieval performance when matched with coarse-grained
embeddings, resulting in poor top-1 retrieval accuracy (Supplementary
Fig. 6). To address this issue, we introduce a speculative fine-grained
retrievalmechanism (shown in Fig. 3d) to balance the retrieval process.
It first performs speculative filtering using query embeddings at all

Fig. 2 | Motivations and challenges of multimodal embedding on mobile
devices. a Viewed-image traces from one mobile user. b MEM inference speeds
across different devices, compared to the average image viewing rates of common

mobile applications. c MEMs rapidly drain mobile batteries. * indicates testing
performed on the GPU of the Jetson ORIN.

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 3

www.nature.com/naturecommunications


granularities and then refines the selection through a second, fine-
grained matching stage.

Experimental setup
The default MEM model is pretrained ImageBind (huge version)6.
ImageBind extends the visual and textual pretrained encoder of CLIP5

with additional capacity that embeds 6modalities into a shared space.
To demonstrate the scalability and versatility of Reminisce, we also
evaluate it on CLIP. Over 80% (35 out of 43) of recent multimodal
foundation models are based on those two MEM models30.

We compare Reminisce to the following alternatives: (1) Multi-
modal Embedding Model (MEM) without any optimization. (2)
BranchyNet26, using a traditional early-exit mechanism. (3) Fluid
Batching31, an early-exit-aware batching algorithm that allows sample
preemption at runtime. For completeness, we also include a naive
baseline using monolithic model, i.e., without layer-wise execution,
though it incurs nearly unaffordable memory footprint on certain
mobile devices. For a fair comparison, all baselines are equipped with
ImageBind fine-tuned for the downstream task.

We evaluate the performance of Reminisce using the following
metrics: (1) Accuracy: Retrieval accuracy for each task, with relative
accuracy compared to the full-sized MEM model finetuned on the
corresponding dataset. (2) Latency: Query latency on mobile devices,
defined as the time from query initiation to completion. (3) Through-
put: The amountof content processedper secondorminute, assuming
all samples are buffered in storage. (4) Energy Consumption: Energy
consumed during the embedding phase. (5) Memory Usage: Peak
memory footprint during the embedding phase.

As summarized in Table 1, we use four publicly available datasets
across four modalities to demonstrate the effectiveness of

Reminisce: (1) COCO dataset: Used for text-image retrieval, it contains
123 k images, each paired with five captions. We use the validation
subset of COCO to evaluate inference performance, with each caption
retrieving its corresponding image. For example, given a caption, 75%
of the relevant images are successfully retrieved within the top five
results (R@5), based on the full-sized MEM model finetuned on the
COCO dataset. (2) FLICKR dataset: Used for image-text retrieval, it
consists of images paired with textual descriptions. Absolute retrie-
val accuracy is 70% for the fine-tuned full-sized MEM model. (3)
CLOTHO dataset: Used for text-audio retrieval, it contains audio clips
paired with textual descriptions, enabling evaluation across audio
and text modalities. Full-sized MEM model achieves 30% retrieval
accuracy. (4) HARSMART dataset: Used for IMU retrieval, it employs
fine-grained embeddings as queries to assess performance in
retrieving IMU data based on embeddings. The MEMmodel achieves
78% retrieval accuracy.

Additionally, to demonstrate the effectiveness of Reminisce in
real-world scenarios, we conduct a case study using recent internet
data that was not seen by the model during pretraining. Following

Fig. 3 | Illustrations of theproposedReminisce. aDetailedworkflowofReminisce
with system Designs1,2,3. b Illustration of Design 1: Data-aware pre-exit predictor
and its advantages over traditional early-exit approaches. c Illustration of Design 2:

Comparison of our progressive LoRA approach to previous methods. d Illustration
of Design 3: Coarse-grained embeddings are speculatively filtered, and top-ranking
candidates are refined into fine-grained embeddings for final retrieval.

Table 1 | Description of the datasets used

Dataset Modality Size Metric

COCO52 Text-Image 123,287 R@5

FLICKR53 Text-Image 8,091 R@1

CLOTHO54 Text-Audio 3,938 R@10

HARSMART55 IMU 10,299 Acc.

The embedded modality is in bold. The performance metric is obtained from the full-sized
ImageBind finetuned for the downstream tasks.

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 4

www.nature.com/naturecommunications


prior empirical literature on Twitter analysis32, we collect a recent
publicly available dataset of Twitter memes, referred to as TWITTER.
The TWITTER dataset contains 803 images and their corresponding
meme descriptions across various up-to-date topics.

We evaluate Reminisce on the NVIDIA ORIN (ORIN)24, Jetson
TX2 (TX2)33, Raspberry Pi 4B (RPI4B)34, and a flagship smartphone
with Qualcomm Snapdragon 8Gen3 (8GEN3)35. The default operating
mode for ORIN is MAXQ, which is the most cost-effective mode with
four large cores disabled. For the Jetson TX2, we select the MAXN
mode, the most powerful mode available, to fully utilize GPU com-
puting power. To reduce memory consumption, we quantize the
model to INT4precision for the 8GEN3 smartphone and INT8precision
for ORIN, TX2, and RPI4B. Please refer to Supplementary for more
implementation details about hardware specification, executingmode
specifications, and quantization. Reminisce runs on the GPU for the
ORIN and TX2 boards. For the RPI4B and the 9GEN3 smartphone,
Reminisce runs on the CPU due to the lack of CUDA support. Current
mobile inference engines cannot effectively utilize GPUs for MEM
execution9,20,36.

Evaluation statement
Weevaluate Reminisce to address the following key questions: (1) How
much improvement does Reminisce achieve in terms of embedding
throughput and relative retrieval accuracy under different memory
budgets across various devices? (2) How much performance
improvement does each component contribute? (3) What is Remi-
nisce’s performanceunder different query latencybudgets? (4)What is
the system cost of Reminisce? (5) How does Reminisce perform on
commodity mobile phones in daily usage scenarios?

End-to-end performance
First, we present the end-to-end embedding throughput performance
under the layer-wise inference setting, a more user-friendly approach
for always-on daily applications due to its low memory footprint.

Reminisce achieves an order of magnitude improvement in
throughput. Figure 4 shows that Reminisce can achieve a 12.4 × aver-
age throughput improvement compared to MEM. This gain is primarily
driven by the early-exit mechanism, which allows the model to exit
early when the embedding is sufficiently accurate, avoiding unneces-
sary computations. Additionally, after parameter-efficient healing, the
coarse-grained embeddings can convey similar semantics to fine-
grained embeddings. For instance, in the text-audio retrieval task
CLOTO on Jetson ORIN, Reminisce achieves a 45 × throughput
improvementwith less than 3% relative accuracy loss under the default
query latency budget of 1.5 s.

Regarding stronger baselines, Fluid Batching introduces a
early-exit-aware batching mechanism, achieving a 3 × throughput
improvement over the naive early-exiting baseline BranchyNet and
6 × over MEM under the layer-wise inference setting. However, Remi-
nisce still outperforms Fluid Batching across all datasets, providing
up to 2.4 × speedup in throughput. The advantages of Reminisce Arise
not only from the early-exit mechanism but also from the pre-exit
strategy, which predictively adjusts the embedding granularity based
on the sample’s characteristics.

Significance of key designs
As illustrated in Fig. 5a, while the zero-shot embedding of ImageBind
has the generalization ability across different datasets, the exit healing
mechanism is crucial for enhancing Reminisce’s performance. As

0 5 10 15 20 25 30

0.7

0.8

0.9

1.0
R

el
at

iv
e 

Ac
c

2 4 6 8 10

0.7

0.8

0.9

1.0

R
el

at
iv

e 
Ac

c

1.0 1.5 2.0 2.5

0.7

0.8

0.9

1.0

R
el

at
iv

e 
Ac

c

1 2 3 4 5 6

0.7

0.8

0.9

1.0

R
el

at
iv

e 
Ac

c

0 5 10 15 20
0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7
0.80

0.85

0.90

0.95

1.00

1.0 1.2 1.4 1.6 1.8 2.0
0.80

0.85

0.90

0.95

1.00

1 2 3 4
0.80

0.85

0.90

0.95

1.00

0 10 20 30 40

0.80

0.85

0.90

0.95

1.00

2 4 6 8

0.80

0.85

0.90

0.95

1.00

1.0 1.5 2.0 2.5 3.0

0.80

0.85

0.90

0.95

1.00

R
el

at
iv

e 
Ac

c

1.0 1.5 2.0 2.5 3.0

0.80

0.85

0.90

0.95

1.00

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1.0

2.5 5.0 7.5 10.0 12.5 15.0
0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e 
Ac

c

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1.0

Fig. 4 | Illustrations of throughput versus accuracy across differentmethods and devices. a JetsonOrin (INT8). b Jetson TX2 (INT8). cRaspberry Pi 4B (INT8).d 8Gen3
Smartphone (INT4). For fairness, only layerwise baselines are included.

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 5

www.nature.com/naturecommunications


shown by the green dotted lines, retrieval accuracy improves after
healing the exited branches. For instance, compared to zero-shot MEM,
exit healing boosts retrieval accuracy by 37.8% and 13.2% on average
for the COCO and FLICKR datasets, respectively.

After healing, Reminisce leverages the pre-exit mechanism to
dynamically adjust embedding granularity based on each sample’s
characteristics. It can predictively exit at the optimal layer to balance
the trade-off between accuracy and throughput. As shown in Fig. 5a,
compared to exiting all samples at afixed layer, the data-aware pre-exit
mechanism improves retrieval accuracy by up to 19.8%. The higher
coarse-grained retrieval performance is crucial for final fine-grained
retrieval.

With a default query candidate pool size of 10, retrieval accuracy
using filtered fine-grained embeddings is, on average, 35.5% higher
than theprevious coarse-grained retrieval accuracy. This improvement
is due to the fact that over 95% of the targets retrievable by full-sized
MEMs are successfully retrieved from the toplist of coarse-grained
embeddings. As a result, the embedding accuracy of Reminisce is
comparable to that of the full-sized MEM.

Impact of query latency tolerance
Although query costs are negligible compared to embedding costs in
the long run—since queries occur less frequently than continuous daily
embeddings—they are immediately noticeable to users. Thus, we
illustrate Reminisce’s performance under different query latency tol-
erance in Fig. 5b. During queries, the device holds the entire quantized
model in memory without layer-by-layer loading. Given the infre-
quency of queries, the temporary memory increase is acceptable.
Query latency comprises three components: query embedding,
matching, and fine-grained embedding. Baseline methods with

memory encoders require only the first two steps, typically taking
around 1.2 s. Reminisce takes less than 1.5 s (the default latency budget
of our evaluation) to achieve acceptable query accuracy. As shown, if
the system tolerates higher query delays, performance can be further
enhanced. For example, on the FLICKR dataset, the relative retrieval
accuracy of Reminisce improves from 92% to 99% after refining an
additional 10 candidates (≈0.2 s).

Additionally, similar to web cookies37, the query process can skip
the complex fine-grained embedding when repeated, improving effi-
ciency in multi-query scenarios where frequently queried items are
retrieved faster. Once a local embedding is queried, its embedding is
permanently upgraded. Under these conditions, the system becomes
more efficient by skipping the fine-grained embedding process for
frequently queried items.

System cost
Figure 6 shows the normalized energy consumption of Reminisce and
various baselines. Reminisce reduces energy consumption by up to
29× and 20× on average compared to layerwise-executed baselines.
Even compared to naive MEM without layerwise execution, Reminisce
still achieves up to 7× energy savings on average. This is due to
Reminisce’s ability to determine the optimal number of layers for
embedding and offload embedding computation to the less frequent
querying process.

We store the embeddings of the items in INT4 precision. Each
embedding is 1024-dimensional, resulting in a storage cost of
approximately 5 KB per item. Based on the collected mobile applica-
tion usage statistics, typical users encounter around 6000 images
daily. Thus, the storage cost for image embeddings is roughly 29.3MB
per day. Annually, this amounts to about 10.4GB, which is comparable

40 50 60
Throughput

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e 
Ac

cu
ra

cy

40 50 60
Throughput

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MEM MEM (healed)PE (healed) Ours (healed) PE Ours

1.2 1.4 1.6 1.8
User Query Delay Limit (s)

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e 

Ac
cu

ra
cy

Ours
EE
MFM

1.2 1.4 1.6 1.8
User Query Delay Limit (s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e 

Ac
cu

ra
cy

Ours
EE
MFM

EE
MEM

EE
MEM

Fig. 5 | Performance analysis of Reminisce’s key designs and query latency
impact on ORIN (INT8). a Throughput-to-accuracy trade-off with and without
Reminisce’s key designs (1, 2, 3). PE refers to pre-exited coarse-grained embeddings

without fine-grained upgrading during the query phase. b Performance under dif-
ferent query latency tolerance.

Fig. 6 | Energy consumption of various methods across four datasets. Our method consistently exhibits the lowest energy usage, highlighting its efficiency and low
battery demand. Device: ORIN (INT8).

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 6

www.nature.com/naturecommunications


to the storage required for a high-quality movie. In contrast, the cur-
rent off-the-shelf solution Rewind38 consumes 14GB of storage per
month on average, as officially reported39.

Case study: Twitter meme retrieval
To demonstrate the practicality of Reminisce in real-world scenarios,
we conducted a case study using daily surfing images and captions
collected from Twitter memes. End users filtered the data to ensure
privacy, and a total of 805 figures were collected to simulate 30min of
surfing. Our evaluation compares multiple methods—including Naive
MEM without layer-wise execution, the MEM baseline, BranchyNet,
Fluid Batching, and our Reminisce—in terms of throughput, energy,
memory, and retrieval accuracy.

As shown in Fig. 7, all baseline methods take over 80min to
complete the retrieval task on a fully utilized CPU. Naive MEM incurs a
largememory footprint by loading the entiremodel at once, evenwith
INT4 quantization. Its layer-wise execution counterpart (MEM baseline)
reduces memory usage but decreases throughput due to frequent
layer-switching overhead. BranchyNet improves throughput by skip-
ping layers but at the expense of lower accuracy. In contrast, Remi-
nisce completes the same task in 28min—achieving a 3× throughput
improvement compared to even the strong baseline Fluid Batching,
due to our mobile-friendly optimizations.

Our approach reduces peak memory usage by 7× compared to
Naive MEM, lowering the footprint below 200MB. This includes a small
buffer (under 50MB) for pipelined execution and temporary activa-
tions—a reasonable tradeoff for performance gains. Energy consump-
tion is reduced by up to 4×, enabled by fewer layer computations and
more efficient batching. The system also achieves higher retrieval
accuracy than naive early-exit methods while maintaining an accep-
table query latency of just0.5 s. The additionalmemoryoverhead from
batching parallelism is justified by the substantial performance
improvements.

These quantitative improvements—from faster processing and
lower resource consumption to robust retrieval performance—
demonstrate that Reminisce is highly practical for deployment in
mobile scenarios, where computational efficiency and low-latency
requirements are critical.

User study: mobile application trace
To further validate Reminisce, we conducted a user study by
collecting real user data and simulating the system’s performance
in embedding images generated during daily mobile app usage.
We do not account for charging time or the energy used by the
applications themselves to provide a more straightforward com-
parison between naive MEM and Reminisce. As shown in Fig. 8,
without Reminisce, the naive MEM system (in INT4 precision)
would require more than 3 battery charges per day, and over 20%
of the images would remain unembedded due to time constraints.
In contrast, Reminisce reduces the number of required charges by
3×, allowing all daily generated data to be embedded. This user
study highlights Reminisce’s ability to efficiently manage and
embed large volumes of data, reducing the burden on battery life
and ensuring that the vast majority of daily usage data is pre-
served and embedded in real-time.

Discussion
In this work, we develop Reminisce, an efficient on-device multimodal
embedding system to function as a memory augmenting service.
Extensive experiments and case studies demonstrate that Reminisce
improves embedding throughput and reduces energy consumption
while maintaining high retrieval accuracy, making it practical for
modern mobile devices.

We offload the full-sized embedding cost to the query phase,
which is infrequent and carries precise retrieval information2. Only
coarse-grained key information is preserved using exited embedding
models. Thismirrors thehumanbrain,which retains key information in
long-termmemory and recalls details only when necessary40. Different
from advanced sparsification or quantization optimizations, which
provides little to no benefit during inference due to the limited sup-
port of mobile hardware41–45, Reminisce can be seamlessly integrated
into off-the-shelf mobile applications to enhance user experience
without requiring complex hardware modifications.

The ability of Reminisce to operate within mobile devices such as
smartphones and Raspberry Pi 4B, while maintaining high-quality
embeddings, highlights its practicality for real-world applications. For
instance, mobile users can now efficiently index and recall multimedia

Fig. 7 | Performance analysis during 30min of Twitter browsing.Our method uses the least CPU time, consumes the least energy, requires under 200MB of memory,
and achieves high retrieval accuracy. Device: 8GEN3 (INT4).

Fig. 8 | Energy and throughput comparison of embedding images viewed under real mobile traces. a Naive MEM. b Ours. Device: 8GEN3 (INT4).

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 7

www.nature.com/naturecommunications


content, fostering new use cases in personal assistants, health track-
ing, etc.

A pivotal advantage of Reminisce lies in its on-device processing
capability, which eliminates the need to offload sensitive data to cloud
services. This mitigates risks associated with data breaches and
unauthorized access, addressing a critical concern in modern AI
systems.

However, due to the extra memory overhead of batching paral-
lelism, Reminisce has a slightly higher peak memory footprint com-
pared to thenaive layer-wise baseline.Detailed information is provided
in the Supplementary Fig. 3. Fortunately, it is still within a practical
range, e.g., 82M for embedding IMU information, which is below the
average Android application memory consumption of 100M as
reported in 202019,46. After 5 years, the mobile RAM capacity has
increased significantly, with up to 24GB available on high-end
devices47. Less than 200MB of peaky memory usage is affordable for
most modern mobile devices.

This study provides the following takeaway messages:
• We prototype the first MEM-empowered mobile search service
architecture. Through user studies and pilot experiments, we
identify the challenges of low embedding throughput and high
energy consumption.

• We introduce Reminisce, an efficient on-device multimodal
embedding system that addresses these challenges. Reminisce
incorporates three techniques: preemptive exit for dynamic
execution scheduling, progressive model healing for cache
optimization, and speculative retrieval to correct premature exits.

• Extensive experiments demonstrate that Reminisce significantly
improves throughput and reduces energy consumption while
maintaining search performance, making it practical for mobile
devices.

Methods
Reminisce overview
In this work, we develop Reminisce, an efficient on-device multimodal
embedding system to address the challenges outlined above. Remi-
nisce is designed to minimize embedding energy costs and query
latency while maximizing throughput and achieving near state-of-the-
art retrieval accuracy. Additionally, Reminisce shall integrate easily
into off-the-shelf mobile applications to enhance user experience
without requiring complex hardware modifications. Lastly, Reminisce
aims to be both versatile and transferable across a wide range of tasks.
To achieve these goals, we leverage early exit, a widely studied opti-
mization technique, as the backbone of our system.

Early Exiting is the key building block. It terminates the compu-
tation of a deep neural network at an intermediate layer based on
predictionconfidence. Typically, a prediction head is introduced at the
end of each layer to serve as a separate exit branch, allowing samples
to be correctly classified at the earliest possible layer.

We choose early exit as the backbone of Reminisce because it
aligns with our design principles: (1) Early exit is mobile hardware-
friendly: it requires no sparsification kernel compilation and integrates
easily into existing multimodal embedding applications. Most mobile
devices do not fully support advanced sparsification or quantization
optimizations, providing little to no benefit during inference41–45. (2)
Early exit preserves the raw structure of MEMs, maintaining their
generalization capacity while bypassing only downstream alignment.
Additionally, early exit is caching-friendly, as the top layers share the
same bottom weights with the exited layers, allowing intermediate
activations to be reused and reducing duplicated computations. Other
techniques like pruning and quantization cannot fully leverage the
intermediate computation of coarse-grained embeddings. This
reduction is crucial for Reminisce, as it eliminates redundant forward
passes, accelerating both embedding and query phases. (3) Compared
to quantization, early exit offers a broader trade-off space. As shown in

our experiments (Supplementary Fig. 4a), easy inputs require only one
layer (just 3% of total computation) to achieve accurate results. Such a
large reduction in cost is not possible with quantization.

As shown in Fig. 3a, Reminisce provides a memory encoder for
clients tobuildcoarse-grained embeddings offline,while the rest of the
model functions as a live encoder for precise online retrieval. (1) Sys-
tem developer preparation: Developers first refine widely-used pre-
trainedmultimodalmodels to reduce the number of layers needed for
token prediction. The refined model is then deployed to mobile
devices for offline embedding. (2) Client offline embedding: Users
employ part of the memory encoder to build superficial embeddings
for pre-exit prediction. After pre-exit, samples with the same exits are
batched and processed layer by layer through pipeline scheduling to
generate coarse-grained embeddings. (3) Client online query:
During the query phase, the query is embedded for matching. Likely
candidates are filtered and refined from the coarse-grained embed-
dings, which are then matched with the query embedding to finalize
retrieval.

In short, we offload the full-sized embedding cost to the query
phase, which is infrequent and carries precise retrieval information2.
This mirrors the human brain, which retains key information in long-
term memory and recalls details only when necessary40. Retrieval
accuracy and latency are sacrificed within acceptable limits to sig-
nificantly reduce embedding costs, as demonstrated in Fig. 4.

While early exit reduces computational load, its application in
mobile MEMs introduces several unique challenges: (1) Low paralle-
lism: Early exit is incompatible with batching, as all samples in a batch
must exit before processing the next26. This reduces throughput on
mobile devices with limited computational resources. Without batch-
ing, it is also harder to amortize loading costs, further slowing layer-
wise inference. (2) Limited benefits: MEMs are not naturally designed
for early prediction and tend to distribute computation across all
layers. For instance, ImageBind’s 32-layer vision module requires an
average of 21.4 layers to process data, limiting computation savings to
33.1%. MEMs need to reduce the layers required for token prediction
and minimize computational resources spent on hesitant or fluctuat-
ing predictions. (3) Performance degradation: Despite thorough train-
ing of exit branches and predictors, some samples may exit too early,
leading to degraded search performance. This is especially proble-
matic in MEMs, where incorrect embeddings can disrupt the unified
embedding space, causing unbalanced distributions and inaccurate
retrieval.

Design 1: data-aware pre-exit predictor
Traditionally, most early-exit methods decide whether to exit at
the end of each branch computation26,48,49. This approach limits
hardware acceleration and batching, as exit points vary by data,
leading to inconsistent workloads within batches and memory
fragmentation26–28. Although some predictive models for CNNs27

predict exit values in advance, they cannot scale to MEMs due to
their convolution-specific design. In this work, we propose a
unified, lightweight early-exit predictor model for all modalities,
derived from intermediate data embeddings. The data-aware pre-
exit predictor preemptively decides the exit point for MEMs,
enabling batch scheduling for better parallelism and helping to
amortize and hide loading time.

Different data contains varying amounts of information content
(Supplementary Fig. 4). Unlike previous work that defines predictive
models manually, we propose using intermediate embeddings to
predict the exit value without supervision. First, we build the fine-
grained embedding Fx for each data point x∈ X as a proxy query label.
Next, we feed the input into the pre-trained MEM layer by layer,
obtaining a set of coarse-grained embeddings Ci

x at different granu-
larities i ∈ range(layers). We then measure the similarity between the
fine-grained and coarse-grained embeddings. When the similarity

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 8

www.nature.com/naturecommunications


between Fx and Ci
x becomes the largest among Fx and Ci

X. query
retrieves Ci

x from Ci
X successfully.Wemark it as a valid embedding exit.

The intermediate embeddings are fed into the predictormodel, and an
MLP model is trained to predict its exit value. This method outper-
forms fixed early-exit baselines, as shown in Fig. 5a.

As shown in Fig. 3b, with the data-aware pre-exit predictor, we can
predict the exit value before embedding, enabling efficient batching of
input data. In addition to early-exit-specific batching, we propose
pipelining the layer-by-layer encoding process, where loading and
embedding are conducted simultaneously.

Design 2: progressive LoRA healing
OriginalMEMs are notdesigned for early exit, as they tend todistribute
computation across all layers. As a result, most data requires many
layers before exiting.We propose a progressive LoRA approach to heal
the model, reducing the number of layers needed for each token.

Previous early-exit healing approaches29 use the parameter-
efficient fine-tuning method, LoRA18, to distill knowledge into lower
layers, reducing the number of layers required for each token. Naive
LoRA tuning fine-tunes a separate LoRA suite for each early-exit layer.
For instance, with 32 exits, 32 LoRA suites are required. While this
ensures good performance, it has a drawback: the embedding from
layer n cannot be reused to compute the embedding for layer n + 1. As
illustrated in Fig. 3c, this occurs because LoRA l1, ...,nn for layer n is not
the same as the first n layers of LoRA l1, ...,n+ 1

n + 1 . Unlike standard
embeddings, which complete all layers sequentially, early-exit meth-
ods must check whether each layer is the final one. If layer n’s
embedding is incompatiblewith layer n + 1, the early-exitmethodmust
recompute the embedding for layer n + 1 from scratch, negating many
of the benefits of early exit.

On cloud servers, computation is not a major issue due to their
high processing power, and reducing model weights to alleviate I/O
pressure is the primary concern. However, for mobile devices with
limited computational power, I/O pressure is less of a concern since
they typically serve only one user at a time.

Reminisce proposes a progressive LoRA healing method to
address this issue, aiming to use a single LoRA suite for all exits. To

achieve this, we tune the LoRA layer by layer. For each exit, we tune
only the LoRA for the current exit while keeping the previous exits’
LoRAfixed. Since the tunable parameters are fewer than thefixedones,
the healing capacity isweaker compared tousing separate LoRAsuites,
which negatively impacts convergence (i.e., fine-grained embedding)
performance (Supplementary Fig. 5b). To mitigate this, instead of
tuning one LoRA layer at a time, we progressively tune more LoRA
layers at later exits. Similar to the window size in convolutional layers,
we define the number of tuned LoRA layers as the LoRA step.

To determine the optimal step during training, we use informa-
tion from the predicted exit statistics. We set the training step at the
pivot of the predicted exit statistics, ensuring that most exits are
healed with an appropriate step size (Supplementary Fig. 5a). This
approach prioritizes smaller exits, aligningwith the heuristic thatmost
data exits occur at earlier layers, which require more focused healing.
At later stages, larger steps enhance fine-grained performance during
queries without significantly affecting exit flexibility (Supplemen-
tary Fig. 5b).

Design 3: speculative fine-grained retrieval
With coarse-grained embeddings, we can filter out potential candi-
dates. Further fine-grained embeddings are then processed on these
filtered candidates to complete the final retrieval. However, using the
default query embeddingwith a full-capacity encoder does not achieve
precise top-1 retrieval (Supplementary Fig. 6a). This poor performance
stems from two unique challenges.

# Challenge 1: Reduced embedding capacity. Even if we modify
themodel to predict early and align it with the full embedding, exiting
early during inference inevitably reduces accuracy compared to full-
capacity embedding. Fortunately, while coarse-grained embeddings
may not achieve precise top-1 retrieval, they can filter out the most
likely candidates when expanding the retrieval range to top-10 as
shown in Supplementary Fig. 6a. Thus, this challenge can be alleviated
by refining the coarse-grained embeddings filtered with query
information.

#Challenge 2: Unbalanced embeddingdistribution. Different data
exits at different layers, leading to unbalanced embeddings in storage.

Fig. 9 | Invalidation strategy of Reminisce. During the offline embedding phase,
intermediate activations from superficial embeddings are temporarily cached in
RAM to compute coarse-grained embeddings. After each batch, these activations

are sequentially invalidated from RAM. During the query phase, cached embed-
dings that match the incoming query are loaded to compute fine-grained embed-
dings and are immediately invalidated afterward.

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 9

www.nature.com/naturecommunications


Although each embedding is fine-tuned to approximate the full
embedding, embeddings from different exit layers retain unique
characteristics. Samples from similar exit layers tend to have similar
embedding distributions. As a result, a query embedding from a full-
capacity encoder cannot retrieve these embeddings precisely (Sup-
plementary Fig. 6).

Inspired by speculative decoding50, a popular acceleration tech-
nique for language models, we propose feeding the query embedding
at different granularities to achieve balanced filtering, as shown in
Fig. 3d. (1) Speculative filtering: The top k candidates at each query
granularity are preserved for the second round of filtering. (2) Global
verifying: The second round selects the final top k candidates from all
granularities. If a sample ID is duplicated, the candidate with the next
highest score is preserved. (3) Fine-grained correcting: Finally, the
coarse-grained embeddings are refined using the rest of the model to
generate fine-grained embeddings, which are then matched with the
query for more precise retrieval.

Cache reuse and invalidation
As shown in Fig. 3, coarse-grained embeddings can be reused for fine-
grained embeddings. However, due to the down-sampling structure in
the output head, it cannot be reused directly. To address this, we store
intermediate activations prior to each down-sampling layer. This
approach allows coarse-grained embeddings to be reused without
recomputation, reducing query latency by up to 70%. We also reuse
superficial embeddings to lower the cost of data-aware coarse-grained
embedding, improving embedding throughput by up to 30%.

To efficientlymanage intermediate activations and avoid resource
waste from stale data, we adopt a cache invalidation strategy as shown
in Fig. 9. During offline embedding phase, intermediate activations
from superficial embeddings are temporarily stored in RAM to com-
pute coarse-grained embeddings. After each batch, these cached
activations are sequentially invalidated from RAM. Coarse-grained
intermediate activations are subsequently stored on disk, which has
fewer constraints compared to RAM (see Supplementary for details).
At query phase, cached embeddings matching the incoming query are
loaded to compute fine-grained embeddings and are promptly invali-
dated afterward.

Data availability
The datasets involved in this study are all publicly available and can be
accessed as follows: TheCOCOdataset used in this study are available in
the COCO database under accession code https://cocodataset.org/#
download. The FLICKR dataset used in this study are available on
Kaggle under accession code https://www.kaggle.com/datasets/
adityajn105/flickr8k. The CLOTHO dataset used in this study are avail-
able on Zenodo under accession code https://zenodo.org/records/
3490684. The HARSMART dataset used in this study are available in
the UCI database under accession code https://archive.ics.uci.edu/ml/
machine-learning-databases/00364/dataset_uci.zip. The collected
Twittermemedataset have been deposited on Kaggle under accession
code https://www.kaggle.com/datasets/penguin0211/twitter-dataset-
for-mo bile-search. The collected traces in this study have been
deposited on Kaggle under accession code https://www.kaggle. com/
data sets/dongqicai/mobile-trace-of-viewed-images. All user data used
in this study were anonymized prior to analysis. Personally identifiable
information such as names and device identifiers were removed fol-
lowing standard anonymization protocols. The resulting dataset con-
tains only abstracted behavioral features (e.g., app usage timestamps,
total ImageView count, and image view throughput per app) that
cannot be linked back to individuals. All participants provided
informed consent prior to data collection. Each participant was
informed about the purpose of the study, the type of data collected,
the anonymizationprocedure, and their rights towithdrawat any time.
Furthermore, the open-sourced multimodal embedding models

utilized in this paper canbe accessed via the following links: ImageBind
(https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) and
CLIP-b/16 (https://huggingface.co/openai/clip-vit-base-patch16).

Code availability
Codes for this work are available at51: https://github.com/caidongqi/
Mobile-Search-Engine/tree/pc. We also provide sufficient details in the
methods section and supplementary information for replicating
experiments in this work.

References
1. Xu, M., Xu, T., Liu, Y. & Lin, F. X. Video analytics with zero-streaming

cameras. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21) (eds Calciu I. & Kuenning G.) 459–472 (USENIX Associa-
tion, 2021).

2. De Jong, M. et al. Pre-computedmemory or on-the-fly encoding? A
hybrid approach to retrieval augmentation makes the most of your
compute. In International Conference on Machine Learning (eds
Krause, A. et al.) 7329–7342 (PMLR, 2023).

3. Izacard, G. &Grave, E. Leveraging passage retrieval with generative
models for open domain question answering. In Proc. 16th Con-
ference of the European Chapter of the Association for Computa-
tional Linguistics: Main Volume (eds Merlo, P., Tiedemann, J. &
Tsarfaty, R.) 874–880 (Association for Computational Linguis-
tics, 2021).

4. Wang, T. et al. Cross-modal retrieval: a systematic review of
methods and future directions. Proc. IEEE 112, 1716–1754 (2024).

5. Radford, A. et al. Learning transferable visual models from natural
language supervision. In International Conference on Machine
Learning (eds Meila M. & Zhang T.) 8748–8763 (PMLR, 2021).

6. Girdhar, R. et al. Imagebind: one embedding space tobind themall.
In Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (eds Wang, Z., Liu, Z., & Zhang, Z.) 15180–15190 (IEEE/
CVF, 2023).

7. Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process.
Syst. Vol. 30 (2017).

8. Xu, D. et al. Fast on-device LLM inference with npus. In Proc. 30th
ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’25 Vol. 1,
(eds Eeckhout, L. et al.), 445–462 (Association for Computing
Machinery, New York, NY, USA, 2025).

9. Li, X., Lu, Z., Cai, D., Ma, X. & Xu, M. Large language models on
mobile devices: measurements, analysis, and insights. In Proc.
WorkshoponEdge andMobile FoundationModels (eds Zhang, Y., Li,
H., & Wang, Z.) 1–6 (ACM, 2024).

10. Yuan, J. et al. Mobile foundation model as firmware. In Proc. 30th
Annual International Conference on Mobile Computing and Net-
working, (eds Shi, W., Ganesan, D. & Lane, N. D.) 279–295
(ACM, 2024).

11. Xu, M. et al. Resource-efficient algorithms and systems of founda-
tion models: a survey. ACM Comput. Surv. 57, 1–39 (2025).

12. Fassbender, E. & Heiden, W. The virtual memory palace. J. Comput.
Inf. Syst. 2, 457–464 (2006).

13. CNBC. Apple apologizes for listening to Siri conversations (acces-
sed 06 September 2024). https://www.cnbc.com/2019/08/28/
apple-apologizes-for-listening-to-siri-conversations.html (2019).

14. Fei, N. et al. Towards artificial general intelligence via a multimodal
foundation model. Nat. Commun. 13, 3094 (2022).

15. Li, C. et al. Multimodal foundation models: from specialists to
general-purpose assistants. Found. Trends®Comput.Graph. Vis. 16,
1–214 (2024).

16. Chameleon Team. Chameleon: mixed-modal early-fusion founda-
tion models. Preprint at https://arxiv.org/abs/2405.09818 (2024).

17. Kveraga, K., Ghuman, A. S. & Bar, M. Top-down predictions in the
cognitive brain. Brain Cogn. 65, 145–168 (2007).

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 10

https://cocodataset.org/#download
https://cocodataset.org/#download
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://zenodo.org/records/3490684
https://zenodo.org/records/3490684
https://archive.ics.uci.edu/ml/machine-learning-databases/00364/dataset_uci.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00364/dataset_uci.zip
https://www.kaggle.com/datasets/penguin0211/twitter-dataset-for-mobile-search
https://www.kaggle.com/datasets/penguin0211/twitter-dataset-for-mobile-search
https://www.kaggle.com/datasets/dongqicai/mobile-trace-of-viewed-images
https://www.kaggle.com/datasets/dongqicai/mobile-trace-of-viewed-images
https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth
https://huggingface.co/openai/clip-vit-base-patch16
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc
https://www.cnbc.com/2019/08/28/apple-apologizes-for-listening-to-siri-conversations.html
https://www.cnbc.com/2019/08/28/apple-apologizes-for-listening-to-siri-conversations.html
https://arxiv.org/abs/2405.09818
www.nature.com/naturecommunications


18. Hu, E. J. et al. LoRA: Low‑Rank Adaptation of Large Language
Models. In International Conference on Learning Representations
(ICLR) (eds Hofmann K., et al.) (OpenReview, 2022).

19. Android: low memory killer daemon. https://source.android.com/
docs/core/perf/lmkd (2022).

20. Yi, R., Li, X. & Xu, M. mllm. https://github.com/UbiquitousLearning/
mllm (2024).

21. NCNN authors. NCNN. https://github.com/Tencent/ncnn (2024).
22. Android Developers. Accessibility services (accessed 06 Septem-

ber 2024) https://developer.android.com/guide/topics/ui/
accessibility/service (2024).

23. Kurniawan, A. & Kurniawan, A. Introduction to NVIDIA Jetson nano.
In IoT Projects with NVIDIA Jetson Nano: AI-Enabled Internet of
Things Projects for Beginners (eds Kurniawan, A.) 1–6 (Apress, 2021).

24. NVIDIA Corporation. JetsonOrin NX 16GB (accessed 06 September
2024). https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-orin/ (2022).

25. Edge AI and Vision Alliance. Is the new NVIDIA Jetson AGX Orin a
game-changer? We benchmarked it (accessed 06 September
2024) https://www.edge-ai-vision.com/2022/04/is-the-new-
nvidia-jetson-agx-orin-really-a-game-changer-we-benchmarked-it/
(2022).

26. Teerapittayanon, S., McDanel, B. & Kung, H.-T. Branchynet: fast
inference via early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recognition (ICPR)
(eds Bayro-Toules, E., Medioni, G. & Sanniti di Baja, G.) 2464–2469
(IEEE, 2016).

27. Wang, M., Mo, J., Lin, J., Wang, Z. & Du, L. Dynexit: a dynamic early-
exit strategy for deep residual networks. In 2019 IEEE International
Workshop on Signal Processing Systems (SiPS) (eds Parhi, K. K.,
Wiegand, T. & Giannakis, G. B.) 178–183 (IEEE, 2019).

28. Li, X. et al. Predictive exit: Prediction of fine-grained early exits for
computation-and energy-efficient inference. In Proc. AAAI Con-
ferenceonArtificial Intelligence, Vol. 37, (edsWilliams, B.,Chen, Y.&
Neville, J.) 8657–8665 (AAAI, 2023).

29. Gromov, A., Tirumala, K., Shapourian, H., Glorioso, P. & Roberts, D.
The unreasonable ineffectiveness of the deeper layers. In The
Thirteenth International Conference on Learning Representations.
(eds Yue, Y. et al.) Submission number 13737, (OpenReview, 2025).

30. Zhang, D. et al. MM-LLMs: Recent advances in multimodal
large language models. In Findings of the Association for
Computational Linguistics: ACL 2024 (edss Ku, L.-W., Martins,
A. & Srikumar, V.) 12401–12430 (Association for Computational
Linguistics, 2024).

31. Kouris, A., Venieris, S. I., Laskaridis, S. & Lane, N. D. Fluid batching:
exit-aware preemptive serving of early-exit neural networks on
edge NPUs. Preprint at https://arxiv.org/abs/2209.13443 (2022).

32. Du, Y., Masood, M. A. & Joseph, K. Understanding visual memes: an
empirical analysis of text superimposed on memes shared on
Twitter. In Proc. International AAAI Conference on Web and Social
Media, Vol. 14, (eds De Choudhury, M., Chunara, R., Culotta, A. &
Welles, B. F.) 153–164 (AAAI, 2020).

33. NVIDIA Corporation. Jetson TX2 (accessed 06 September 2024)
https://developer.nvidia.com/embedded/jetson-tx2 (2017).

34. Raspberry Pi Foundation. Raspberry Pi 4 Model B (accessed 06
September 2024) https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/ (2019).

35. Xiaomi. Redmi turbo 3 specifications (accessed 10 March 2025)
https://www.mi.com/prod/redmi-turbo-3 (2023).

36. Cai, D. et al. Towards ubiquitous learning: a first measurement of
on-device training performance. In Proceedings of the 5th Interna-
tional Workshop on Embedded and Mobile Deep Learning (eds
Laskaridis, S. & Kouris, A.) 31–36 (ACM, 2021).

37. Cahn, A., Alfeld, S., Arford, P. & Muthukrishnan, S. An empirical
study of web cookies. In Proc. 25th International Conference on

World Wide Web, (eds Bourdeau, J., Hendler, J., Nkambou, R., Hor-
rocks, I. & Zhao, B. Y.) 891–901 (ACM, 2016).

38. RewindAI. RewindAI (accessed06September 2024). https://www.
rewind.ai (2023).

39. Rewind. How does rewind compression work? (accessed 06 Sep-
tember 2024) https://help.rewind.ai/en/articles/6706118-how-
does-rewind-compression-work (2022).

40. Banikowski, A. K. & Mehring, T. A. Strategies to enhance memory
based on brain-research. Focus Except. Child. 32, 1–16 (1999).

41. Lu, L. et al. Sanger: a co-design framework for enabling sparse
attention using reconfigurable architecture. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture,
(eds Sapatnekar, S. S., Stan, M. R. & Zhang, W.) 977–991
(ACM, 2021).

42. Kim, S. et al. Full stack optimization of transformer inference. In
Proc. Workshop on Architecture and System Support for Transfor-
mer Models (ASSYST) at the 50th International Symposium on
Computer Architecture (ISCA 2023) (eds Yadwadkar, A. & Gers-
tlauer, A.) 1–6 (ACM, 2023).

43. Sun, Y. et al. Speformer: an efficient hardware-software cooperative
solution for sparse spectral transformer. In 2022 IEEE 9th Interna-
tional Conference on Cyber Security and Cloud Computing
(CSCloud)/2022 IEEE 8th International Conference on Edge Com-
puting and Scalable Cloud (EdgeCom). (eds Qiu, M. et al.) 180–185
(IEEE, 2022).

44. Armeniakos, G., Zervakis, G., Soudris, D. & Henkel, J. örg Hardware
approximate techniques for deep neural network accelerators: A
survey. ACM Comput. Surv. 55, 1–36 (2022).

45. Wang, H., Zhang, Z. & Han, S. Spatten: efficient sparse attention
architecture with cascade token and head pruning. In 2021 IEEE
International Symposium on High-Performance Computer Archi-
tecture (HPCA) (eds Lehman, T.) 97–110 (IEEE, 2021).

46. Lebeck, N., Krishnamurthy, A., Levy, H. M. & Zhang, I. End the sen-
seless killing: improving memory management for mobile operat-
ing systems. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20) (eds Gavrilovska, A. & Zadok, E.) 873–887 (USENIX, 2020).

47. ASUS. ROG Phone 9 Pro (accessed 20 December 2024). https://
rog.asus.com/phones/rog-phone-9-pro/ (2024).

48. Laskaridis, S., Kouris, A. & Lane, N. D. Adaptive inference through
early-exit networks: design, challenges and directions. In Proc. 5th
International Workshop on Embedded and Mobile Deep Learning
(eds Laskaridis, S. & Kouris, A.) 1–6 (ACM, 2021).

49. Elhoushi, M. et al. LayerSkip: Enabling Early Exit Inference and Self-
Speculative Decoding. In Proc. 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics. (Volume 1: Long Papers) (eds
Ku, L.-W., Martins, A. & Srikumar, V.) 681–692 (Association for
Computational Linguistics, 2024).

50. Leviathan, Y., Kalman, M. & Matias, Y. Fast inference from transfor-
mers via speculative decoding. In International Conference on
Machine Learning. (eds Krause, A. et al.) 19274–19286 (PMLR, 2023).

51. Cai, D. et al. Ubiquitous memory augmentation via mobile multi-
modal embedding system. GitHub Repository: https://github.com/
caidongqi/Mobile-Search-Engine/tree/pc, https://doi.org/10.5281/
zenodo.15379675 (2025).

52. Lin, Tsung-Yi et al. Microsoft coco: common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13,
(eds Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T.) 740–755
(Springer, 2014).

53. Joshi, A. Flickr 8k dataset for image captioning (accessed 06 Sep-
tember 2024). https://www.kaggle.com/datasets/adityajn105/
flickr8k (2020).

54. Drossos, K., Lipping, S. & Virtanen, T. Clotho: An audio captioning
dataset. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), (eds Pérez-

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 11

https://source.android.com/docs/core/perf/lmkd
https://source.android.com/docs/core/perf/lmkd
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/Tencent/ncnn
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.edge-ai-vision.com/2022/04/is-the-new-nvidia-jetson-agx-orin-really-a-game-changer-we-benchmarked-it/
https://www.edge-ai-vision.com/2022/04/is-the-new-nvidia-jetson-agx-orin-really-a-game-changer-we-benchmarked-it/
https://arxiv.org/abs/2209.13443
https://developer.nvidia.com/embedded/jetson-tx2
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.mi.com/prod/redmi-turbo-3
https://www.rewind.ai
https://www.rewind.ai
https://help.rewind.ai/en/articles/6706118-how-does-rewind-compression-work
https://help.rewind.ai/en/articles/6706118-how-does-rewind-compression-work
https://rog.asus.com/phones/rog-phone-9-pro/
https://rog.asus.com/phones/rog-phone-9-pro/
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc
https://doi.org/10.5281/zenodo.15379675
https://doi.org/10.5281/zenodo.15379675
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://www.kaggle.com/datasets/adityajn105/flickr8k
www.nature.com/naturecommunications


Neira, A., Mestre, X., Rupp, M., Jutten, C. & Fung, P.) 736–740
(IEEE, 2020).

55. Bulbul, E., Cetin, A. & Dogru, I. A. Human activity recognition using
smartphones. In 2018 2nd International Symposium on Multi-
disciplinary Studies and Innovative Technologies (ismsit), (eds
Özseven, T., Yaşar, E. & Önal, S.) 1–6 (IEEE, 2018).

Acknowledgements
This work was supported by the National Natural Science Foundation of
China under grant numbers 62425203 (S.W.) and 62032003 (S.W.); the
Royal Academy of Engineering via DANTE (N.D.L.); the European
ResearchCouncil through the REDIAL project (N.D.L.); SPRIND under the
Composite Learning Challenge (N.D.L.); the Google Academic Research
Award (N.D.L.); and the CCF-Sangfor “Yuanwang” Research Fund (M.X.).

Author contributions
D.C. conceived the idea, designed the system, and led the imple-
mentation and evaluation. S.W., M.X., and N.D.L. jointly supervised the
project and provided high-level guidance. C.P. and Z.Z. contributed to
system development and conducted comprehensive experiments. Z.L.
contributed to thequantization experiments. T.Q. supported the revision
experimental designs. All authors discussed the results and contributed
to writing and revising the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-60802-5.

Correspondence and requests for materials should be addressed to
Shangguang Wang, Nicholas D. Lane or Mengwei Xu.

Peer review information Nature Communications thanks the anon-
ymous, reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-60802-5

Nature Communications |         (2025) 16:5339 12

https://doi.org/10.1038/s41467-025-60802-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Ubiquitous memory augmentation via mobile multimodal embedding system
	Results
	Overall framework
	Preliminary measurements
	System designs
	Experimental setup
	Evaluation statement
	End-to-end performance
	Significance of key designs
	Impact of query latency tolerance
	System cost
	Case study: Twitter meme retrieval
	User study: mobile application trace

	Discussion
	Methods
	Reminisce overview
	Design 1: data-aware pre-exit predictor
	Design 2: progressive LoRA healing
	Design 3: speculative fine-grained retrieval
	Cache reuse and invalidation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




