
Ubiquitous Memory Augmentation via Mobile
Multimodal Embedding System
Dongqi Cai

University of Cambridge https://orcid.org/0000-0003-2751-2500
Shangguang Wang

Beijing University of Posts and Telecommunications
Chen Peng

Beijing University of Posts and Telecommunications
Zeling Zhang

Beijing University of Posts and Telecommunications
Nicholas Lane

University of Cambridge
Mengwei Xu

Beijing University of Posts and Telecommunications

Article

Keywords:

Posted Date: January 16th, 2025

DOI: https://doi.org/10.21203/rs.3.rs-5686668/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: There is NO Competing Interest.

https://doi.org/10.21203/rs.3.rs-5686668/v1
https://doi.org/10.21203/rs.3.rs-5686668/v1
https://orcid.org/0000-0003-2751-2500
https://doi.org/10.21203/rs.3.rs-5686668/v1
https://creativecommons.org/licenses/by/4.0/

Ubiquitous Memory Augmentation via Mobile
Multimodal Embedding System

Dongqi Cai
University of Cambridge

Cambridge, United Kingdom

Shangguang Wang
Beijing University of Posts and

Telecommunications
Beijing, China

Chen Peng
Beijing University of Posts and

Telecommunications
Beijing, China

Zeling Zhang
Beijing University of Posts and

Telecommunications
Beijing, China

Nicholas D. Lane
University of Cambridge

Cambridge, United Kingdom

Mengwei Xu
Beijing University of Posts and

Telecommunications
Beijing, China

Abstract

Forgetting is inevitable in human memory. Recently, multi-
modal embedding models have been proposed to vectorize
multimodal reality into a unified embedding space. The gen-
erated embeddings can be easily retrieved to help mobile
users remember and recall information when needed. How-
ever, as the model’s capacity increases, its resource consump-
tion also rises. The resulting slow throughput and significant
computational resource requirements hinder its deployment
on mobile devices. In this paper, we present Reminisce, the
first efficient on-device multimodal embedding system that
enables high-throughput and precise retrieval on resource-
constrained mobile devices. The core design draws inspira-
tion from the memory functions of the human brain, uti-
lizing coarse-grained embeddings to identify likely candi-
dates, which are then refined through query-driven fine-
grained retrieval. A series of algorithm-hardware orches-
trated optimizations automatically navigates this process
and strenghen the embedding quality. Experiments show
that Reminisce provides high-quality embedding represen-
tation with high throughput while operating silently in the
background with negligible memory usage and reduced en-
ergy consumption.

Introduction

Mobile devices are ubiquitous nowadays. They capture lots
of data in users’ daily usage, digitally chronicling every as-
pect of a person’s life. However, such data has not been
fully utilized, attributed not to how to store them, but how
to accurately retrieve them [1]. Specifically, smartphones
have abundant storage (up to 1TB for iPhone 15 Pro) to host
the information captured at 24x7, or local network-attached
storage (NAS) can help accommodate those data as well; yet
there has been a lack of method to efficiently locate the data
intended at query time [2, 3]. The fundamental challenge is
that data generated on devices is multimodal by nature (e.g.,
text, image, audio, IMU, etc), which are hard to be accurately
retrieved in a user-friendly manner, e.g., through natural
language [4].

Fortunately, the recent development of multimodal em-
bedding models (MEM) has shed light on multimodal data
retrieval. For example, CLIP unifies text and imagemodalities
into one embedding space [5]. ImageBind further extends
the functionality to 6 modalities through contrastive learn-
ing [6]. At architecture level, those models primarily consist
of multi-layer transformer encoders [7]. In general, MEMs
will catelyze two novel, exciting types of mobile applications
as shown on the left of Figure 1: (1) cross-modality searching,
which allows users to retrieve data in any modality with
user-friendly interface; (2) retrieval-augmented LLM genera-

tion, which first identifies the relevant multimodal data (e.g.,
a picture) in a historical database with user prompt, and uses
it to enhance the LLM generation quality, e.g., łin the picture
I took for my kid yesterday, is she wearing a blue skirt or
yellow?ž.
This work addresses the emerging scenario of on-device

multimodal embedding, where MEMs operate as a system
service on local devices to embed continuous data streams [8ś
11], functioning like a memory palace [12]. The local gener-
ation of embeddings is motivated by user privacy concerns,
since MEMs can greatly expand the usage of device data,
including screen UIs, recorded voices, etc. Offloading such
information to the cloud may expose it to unauthorized ac-
cess. For instance, it was revealed that Apple Siri had been
eavesdropping on uploaded user conversations to enhance
their public voice assistant model [13]. With cloud-based
MEMs, users risk comprehensive life surveillance, with no
way to verify.

Cost of on-device MEMs. Despite on-device MEM is pri-
vate and generalizable to various downstream tasks [6, 14ś
16], it comes at a cost of resource intensity. Specifically, our
pilot experiments identify two key obstacles towards on-
device multimodal embedding: (1) Low embedding through-

put. It takes dozens of seconds for billion-sized MEMs to
embed a single image, which is significantly slower than the
rate at which mobile devices generate data. As a result, even
if the device runs continuously throughout the day, only
20% of daily information can be embedded. (2) High energy

1

Dongqi Cai, Shangguang Wang, Chen Peng, Zeling Zhang, Nicholas D. Lane, and Mengwei Xu

VISION

DATA

TEXT

DATA

AUDIO

DATA

IMU

DATA

Mobile

Memory

Palace

read
heard

viewed
...

query

The same user after days.

Cross-modality

searchingRetrieval-augmented

Generation tasks
...

Multimodal

encoder

Unified

embedding

、

、

sensed

Application
Mobile UI Accessibility Multimodal

Embedding
Embedding

Space

Detect&Save

Our Focus

Storage

Recall: Retrieval the relevant raw items

Start to remember

Raw
items

Delete

Opt. goal

1.Accuracy

2.Latency

Transformer

Online

recall

(Sometimes)

RAM

Layerwise

Loading

&Execution

Transformer

Transformer

Transformer

Type message here

1.Throughput

2.Memory

3.Energy

Opt. goal

Offline

remembering

(Always)

P
ro
to
ty
p
e

mass production

Figure 1. MEM-based ubiquitous memory palace workflow and its instantiation on mobile devices.

consumption. The slow inference speed, combined with the
immense computing power required, results in extremely
high energy consumption. Embedding data from applications
consumes even more energy than running the applications
themselves. As a result, the battery life of mobile devices
is significantly reduced, often to less than 2 hours. Even if
the embedding process is batched and executed offline (e.g.,
when the device is idle), its substantial resource demands
still hinder practical deployment.

Our response: Reminisce. Reminisce is the first-of-its-
kind efficient on-device multimodal embedding system. The
key idea behind Reminisce is coarse-grained embedding,
built upon the early-exiting technique. It draws inspiration
from the memory functions of the human brain. The embed-
dings generated by the exited MEMs work as coarse-grained
embeddings, which are used to filter out the most likely can-
didates during retrieval queries. These candidates are then
further refined at query time to finalize accurate retrieval.
Furthermore, Reminisce introduces three key optimiza-

tions: predicting exits, healing exited branches, and spec-
ulative fine-grained retrieval. These enhancements adapt
traditional early-exit methods for mobile MEMs, resulting in
higher embedding throughput, improved embedding quality,
and better retrieval precision. Our extensive experiments
demonstrate that Reminisce significantly accelerates the
multimodal embedding processwhile ensuring accurate searches.

We evaluate Reminisce on multiple mobile devices, de-
livering an average 14.9× improvement in throughput and
13.1× reduction in energy consumption compared to the
original MEM. We further conduct a case study using recent
Twitter data and a user study on mobile application traces
collected from eight users for one week, demonstrating the
practicality of Reminisce in real-world scenarios.

Results

Overall framework

As shown in right side of Figure 1 , we prototype an on-
device MEM-powered search service to embed multimodal
streaming data for future retrieval, functioning like a mem-
ory palace [12]. We specifically target mobile devices, includ-
ing smartphones and IoT devices with similar computing
capabilities. These devices have usable but weaker process-
ing units compared to cloud servers, with limited battery and
memory available for long-term background processes [17].
From the device perspective, the service consists of two

runtimes:

• Embedding runtime (Offline remembering in

the backend) continuously detects and stores newly
generated multimodal content, such as downloaded
images, scanned texts, listened-to audio, and logged
IMU sensor data. Each item is processed layer by

2

Ubiquitous Memory Augmentation via Mobile Multimodal Embedding System

layer through MEMs1, generating 1024-dimensional
embeddings in a unified space.
• Query runtime (Online recall in the frontend)

is triggered when the user searches for a specific
item or performs other tasks based on search results.
To retrieve relevant items, the query embedding is
compared with stored embeddings to find the most
similar matches. If the raw data corresponding to the
matched embeddings aligns with the query intent,
the query is tagged as successful.

System developers prepare the embedding model offline,
typically by fine-tuning with powerful cloud GPUs, using
widely-used pretrained multimodal embedding models [5, 6].
They define the expected offline costs and online perfor-
mance for each application by configuring system hyperpa-
rameters before deployment.

Experimental Setup

Models The default MEM model is pretrained ImageBind
(huge version) [6]. ImageBind extends the visual and textual
pretrained encoder of CLIP [5] with additional capacity that
embeds 6 modalities into a shared space. To demonstrate the
scalability and versatility of Reminisce, we also evaluate
it on CLIP. Over 80% (35 out of 43) of recent multimodal
foundation models are based on those two MEMmodels [20].

Baselines We compare Reminisce to the following alter-
natives: (1) Multimodal Embedding Model (MEM) without
any optimization. (2) BranchyNet [21], using a traditional
early-exit mechanism. (3) Fluid Batching [22], a novel
early-exit-aware batching algorithm that allows sample pre-
emption at runtime. For completeness, we also include a
naive baseline without layer-wise execution, though it in-
curs an unaffordable memory footprint on certain mobile
devices. For a fair comparison, all baselines are equipped
with ImageBind fine-tuned for the downstream task.

Metrics We evaluate the performance of Reminisce using
the following metrics: (1) Accuracy: Retrieval accuracy for
each task, with relative accuracy compared to the full-sized
MEM model finetuned on the corresponding dataset. (2) La-
tency: Query latency on mobile devices, defined as the time
from query initiation to completion. (3) Throughput: The
amount of content processed per second or minute, assuming
all samples are buffered in storage. (4) Energy Consumption:
Energy consumed during the embedding process. (5) Mem-

ory Usage: Peak memory footprint during the embedding
process.

Dataset As summarized in Table 1, we use four publicly
available datasets across four modalities to demonstrate the

1Deep learning models are often too large for mobile devices, leading to

inference processes being terminated by the OS. Current mobile inference

engines provide layerwise execution to support large models [18, 19].

Dataset Modality Size Metric

COCO [23] Text-Image 123,287 R@5

FLICKR [24] Text-Image 8,091 R@1

CLOTHO [25] Text-Audio 3,938 R@10

HARSMART [26] IMU 10,299 Acc.

Table 1. Description of the datasets used. The embedded
modality is highlighted. The performance metric is obtained
from the full-sized ImageBind finetuned for the downstream
tasks.

effectiveness of Reminisce: (1) COCO dataset: Used for text-
image retrieval, it contains 123k images, each paired with
five captions. We use the validation subset of COCO to eval-
uate inference performance, with each caption retrieving
its corresponding image. For example, given a caption, 75%
of the relevant images are successfully retrieved within the
top five results (R@5), based on the full-sized MEM model
finetuned on the COCO dataset. (2) FLICKR dataset: Used for
image-text retrieval, it consists of images paired with textual
descriptions. Abosulte retrieval accuracy is 70% for the fine-
tuned full-sized MEM model. (3) CLOTHO dataset: Used for
text-audio retrieval, it contains audio clips paired with tex-
tual descriptions, enabling evaluation across audio and text
modalities. Full-sized MEM model achieves 30% retrieval
accuracy. (4) HARSMART dataset: Used for IMU retrieval, it
employs fine-grained embeddings as queries to assess per-
formance in retrieving IMU data based on embeddings. The
MEM model achieves 78% retrieval accuracy.

Additionally, to demonstrate the effectiveness of Reminisce
in real-world scenarios, we conduct a case study using re-
cent internet data that was not seen by the model during
pretraining. Following prior empirical literature on Twitter
analysis [27], we collect a recent publicly available dataset of
Twitter memes, referred to as TWITTER. The TWITTER dataset
contains 803 images and their corresponding meme descrip-
tions across various up-to-date topics.

Hardware and Quantization We test Reminisce on the
NVIDIA ORIN (ORIN) [28], Raspberry Pi 4B (RPI4B) [29],
and one flagship smartphones with Qualcomm Snapdragon
8Gen3 (8GEN3) [30]. For the 8GEN3 smartphone, Reminisce
runs on the CPU with the model quantized to INT4 preci-
sion to reduce memory consumption. To ensure the con-
tinuity of experiments, an external battery of equivalent
capacity is connected. Since ORIN’s GPU does not support
INT4 computation, we load the raw model with FP32 preci-
sion. Reminisce runs on the RPI4B’s CPU due to the lack of
CUDA support.

Preliminary Measurements

First, we present a preliminary study to demonstrate the
utility and efficiency of on-device multimodal embedding

3

Dongqi Cai, Shangguang Wang, Chen Peng, Zeling Zhang, Nicholas D. Lane, and Mengwei Xu

08
-22

08
-23

08
-24

08
-25

08
-26

08
-27

08
-28

08
-29

0

20

40

60

80

100

120

140

160

of

 v
ie

we
d

im
ag

es
 /

m
in

ut
e Categoried Apps

Entertainment & Media
Communication & Social

Others
Productivity & Utilities

Health, Travel & Lifestyle
Shopping & Finance

Figure 2. Viewed image trace of mobile users.

“The sound of fireworks made our 200th

day feel even more magical..”

“On July 13th in Santa Clara, we heard

fireworks in the night suddenly..”
Firework

Audio Images Texts

Confidence: 0.99 Confidence: 0.95

Confidence: 0.89

Confidence: 0.91

Figure 3. Demo of cross-modal retrieval using MEMs.

ORIN (G
PU

, F
P3

2)

NANO (G
PU

, F
P3

2)

RPI4
B (C

PU
, F

P3
2)

Mob
ile

#1 (
CPU

, IN
T4

)

Mob
ile

#2(C
PU

, IN
T4

)

Mob
ile

#2 (
CPU

, F
P3

2)
0

25

50

75

100

Th
ro

ug
hp

ut

(C
on

te
nt

s #
 /

m
in

)

Entertainment & Media
Communication & Social
Others
Productivity & Utilities
Health, Travel & Lifestyle
Shopping & Finance

0

25

50

75

100

El
ap

se
d

em
be

dd
in

g
tim

e
(h

rs
)

(a) Throughput

Idl
e (

Scr
ee

n O
n)

Vid
eo

 Pl
ay

er

Sy
ste

m Fu
nct

ion

Sh
ort

-fo
rm

 Vi
de

o
Cha

t

Netw
ork

 Utili
ty

Sh
op

pin
g

Gam
ing

int
4 M

EM

fp3
2 M

EM

fp3
2 M

EM
*

App/Activity

0

5

10

Po
we

r (
w)

5

10

15
Us

ab
le

 ti
m

e
(h

rs
)

(b) Battery

Figure 4. Throughput and energy issues. (a) MEM inference
speed across different devices compared to the average image
generation speed of various mobile applications. (b) MEMs
rapidly drain the battery of the test mobile phone. * indicates
GPU inference power consumption of the Jetson ORIN.

in real-world scenarios. We conducted a user study to col-
lect viewed images from daily mobile applications used by
8 volunteers, aged 20 to 52, over the course of a week. To
achieve this, we developed an Android application with ac-
cessibility services [31] to detect and store newly appeared
visual content2. One collected trace is shown as an example
in Figure 2.

Observation: MEMs are contextually expressive. All
images and corresponding texts are collected and embedded
using ImageBind [6]. By aligning multimodal embeddings
into a common space, ImageBind can effectively retrieve
semantically relevant content from different modalities us-
ing human-friendly input formats. For example, as shown
in Figure 3, the sound of fireworks retrieves images of fire-
works from the albums and their corresponding textual notes
with high confidence. A rigorous numerical analysis across
various tasks will be presented in the evaluation section.

Challenge: MEMs are resource-intensive. To assess the

2Images are hashed to include only new content. Images smaller than 100KB

are excluded to avoid capturing icons and minor system elements.

cost of on-device embedding, we ran ImageBind inference
on four different mobile devices, ranging from development
boards to commodity smartphones.
Huge workloads and low throughput. Despite their

contextually expressive capabilities, the embedding speed is
too slow to keep pace with the figures generated by applica-
tions. As shown in Figure 4a, on all CPU-based devices, the
encoding speed is insufficient for real-time application use.
Over a full day of usage, the speed is only sufficient to em-
bed 20% of the figures generated by applications, requiring
more than 100 hours to process all figures from a single day.
Even with a GPU, Jetson NANO [32] struggles to handle an
entertainment task generating 36.3 images per minute. The
only exception is the NVIDIA ORIN [28], which performs
comparably to a cloud server using an NVIDIA A40 [33].
However, continuously running the CPU or GPU on mobile
devices is impractical due to battery depletion.

Battery depletion. The heavy embedding workloads and
low throughput significantly strain battery life. Continuous
embedding drains the battery even faster than running the
app itself. To illustrate, we used ImageBind to continuously
embed figures from daily apps. As shown in Figure 4b, the em-
bedding process consumes more energy than the apps them-
selves. For example, even when quantized to INT4, MEMs
consume 1.8× more energy than gaming. We also measured
GPU energy consumption on anNVIDIAORIN3.While GPUs
process data faster, they consume more energy than CPUs,
making them unsuitable for long-term embedding in the
current MEM design.

The above challenge has been addressed by the proposed
optimized system Reminisce, which significantly improves
throughput and reduces energy consumption, as shown in
the following evaluation section.

Evaluation

We evaluate Reminisce to address the following key ques-
tions: (1) How much improvement does Reminisce achieve
in terms of embedding throughput and relative retrieval accu-
racy under different memory budgets across various devices?
(2) How much performance improvement does each com-
ponent contribute? (3) What is Reminisce’s performance
under different query latency budgets? (4) What is the sys-
tem cost of Reminisce? (5) How does Reminisce perform
on commodity mobile phones in daily usage scenarios?

End-to-end Performance

First, we present the end-to-end embedding throughput per-
formance under the layer-wise inference setting, a more
user-friendly approach for always-on daily applications due
to its low memory footprint.

3Current mobile inference engines cannot effectively utilize GPUs for MEM

execution [9, 18, 34].

4

Ubiquitous Memory Augmentation via Mobile Multimodal Embedding System

� 	 �� �	

���������������������� �

��

���

���

��
��
���
��
��
� MEM

[CVPR’23]

MEM

(batched)

Ours
Fluid

Batching

[Samsung AI’22]

BranchyNet

[ICPR’16]

Text-Vision

COCO

� 	
 ��
 ������� ���������������!�

����

���

����

���

����

��
��
���

��

�

�

Fluid

Batching

[Samsung AI’22]

MEM

(batched) OursMEM

[CVPR’23]

BranchyNet

[ICPR’16] Text-Vision

FLICKER

� � �� 	�
�
 �������"������� ��� ���#�

���

��

���

���

��
��
��!
��
��
�

Text-Audio

CLOTHO

Fluid

Batching

[Samsung AI’22]

MEM

(batched)

Ours

BranchyNet

MEM

[CVPR’23]

[ICPR’16]

� 	 �� �	

���������������������� �

��

���

���

��
��
���
��
��
�

Fluid

Batching

[Samsung AI’22]

MEM

(batched) Ours
MEM

[CVPR’23]

BranchyNet

[ICPR’16]
IMU

HARSMART

Figure 5. Illustration of throughput-to-accuracy on Jetson TX2. For fairness, only layerwise baselines are included.

Dataset COCO FLICKER CLOTHO SENSOR

Throughput

(Contents / s)

Relative

Accuracy

ORIN

(FP32)

RPI4B

(FP32)

8GEN3

(INT4)

Relative

Accuracy

ORIN

(FP32)

RPI4B

(FP32)

8GEN3

(INT4)

Relative

Accuracy

ORIN

(FP32)

RPI4B

(FP32)

8GEN3

(INT4)

Relative

Accuracy

ORIN

(FP32)

RPI4B

(FP32)

8GEN3

(INT4)

MEM (w/o layerwise)

100.0%
OOM OOM 0.17

100.0%
OOM OOM 0.16

100%
83.3 0.26 0.34

100%
127 0.88 /

MEM 1.92 0.04 0.05 1.92 0.04 0.05 5.23 0.22 0.27 31.3 0.74 /
MEM (batched) 6.22 0.05 0.10 6.22 0.05 0.10 33 0.25 0.32 72 0.84 /

BranchyNet (w/o layerwise)

71.0%
OOM OOM 0.25

92.7%
OOM OOM 0.19

81%
211 0.66 0.85

57%
405 2.81 /

BranchyNet 2.88 0.06 0.07 2.21 0.04 0.06 29.6 0.55 0.69 99.9 2.36 /
Fluid Batch 9.29 0.07 0.16 7.13 0.05 0.12 83.4 0.63 0.80 230 2.68 /

Ours
95.0%

22.5 0.10 0.31
95.1%

16.2 0.07 0.22
98.1%

133 0.66 0.84
95.4%

435 4.52 /
Ours (w/o layerwise) 47.9 0.10 0.33 33.5 0.07 0.23 211 0.66 0.85 680 4.71 /

Table 2. Throughput vs. relative retrieval accuracy. ‘/’ means not supported. ‘OOM’ means out of device memory.

Reminisce achieves an order of magnitude improve-

ment in throughput. Table 2 summarizes the embedding
throughput comparison, while Figure 5 shows that Reminisce
can achieve a 14.9× average throughput improvement com-
pared to MEM. This gain is primarily driven by the early-exit
mechanism, which allows the model to exit early when the
embedding is sufficiently accurate, avoiding unnecessary
computations. Additionally, after parameter-efficient healing,
the coarse-grained embeddings can convey similar semantics
to fine-grained embeddings. For instance, in the text-image
retrieval task on the COCO dataset, Reminisce delivers an
11.7× throughput improvement with less than 3% accuracy
loss.
Regarding stronger baselines, Fluid Batch introduces a

early-exit-aware batchingmechanism, achieving a 3× through-
put improvement over the naive early-exit baseline BranchyNet
and 5× over MEM under the layer-wise inference setting. How-
ever, Reminisce still outperforms Fluid Batch across all
datasets, providing up to a 3× speedup in throughput. The
advantages of Reminisce arise not only from the early-exit
mechanism but also from the pre-exit strategy, which pre-
dictively adjusts the embedding granularity based on the
sample’s characteristics.

Although Reminisce primarily targets layer-wise scenar-
ios, we also evaluated throughput performance when loading
all encoders simultaneously. While this approach can pro-
vide significant throughput gains, it presents challenges such
as out-of-memory errors on ORIN and RPI, especially for
larger models like vision encoders. Reminisce maintains
high throughput in a layer-wise setting, making it a more
practical solution for resource-constrained devices. For in-
stance, on the 8GEN3 mobile, Reminisce can process data
up to 2.5× faster than the naive MEM without loading layers
sequentially, while reducing memory footprint by up to 3.3×.

Interestingly, we find that healing the exited larger MEMs
ismore effective than using a smaller-sized foundationmodel.

�
� ��
���� ��� �

����

��
�

����

��
�

	���

��
�
��
�"

���
�����!������
����!������
� ���!������
��
� �

	� 	�
�
����"���"!

����

��	�

����

����

����

��
��
!�#

��

�

�"
��
�$

���
������������
�����������
�" ���������
��
�"

Fixed

Early exit

(𝕊

Fine-grained

query

3.4)

Data-aware

pre-exit

(𝕊3.2)

COCO FLICKR

Heal

(𝕊3.3)

	� 	�
�
����"���"!

����

��	�

����

����

����

��
��
!�#

��

�

�"
��
�$

���
������������
�����������
�" ���������
��
�"

Figure 6. Throughput-to-accuracy trade-off with and with-
out Reminisce’s key designs, demonstrating their signifi-
cance. PE refers to pre-exited coarse-grained embeddings
without fine-grained upgrading during the query phase.

For example, using CLIP-b/16 with 85.6M parameters results
in embeddings that are 2.7× faster than ImageBind but sig-
nificantly reduces the ability to embed different modalities
concisely, leading to up to 39.8% accuracy loss. Though with
our system design, the accuracy loss is mitigated to 3.1%
with a 2.7× throughput improvement, its performance is still
inferior to the healed ImageBind. Fortunately, Reminisce
enables narrows the cost gap between the two models, while
achieving much higher retrieval performance.

Significance of Key Designs

Effect of Exit Healing As illustrated in Figure 6, while
the zero-shot embedding of ImageBind has the generaliza-
tion ability across different datasets, the exit healing mech-
anism is crucial for enhancing Reminisce’s performance.
As shown by the green dotted lines, retrieval accuracy sig-
nificantly improves after healing the exited branches. For
instance, compared to zero-shot MEM, exit healing boosts re-
trieval accuracy by 37.8% and 13.2% on average for the COCO
and FLICKR datasets, respectively.

Effect of Data-aware Pre-exit After healing, Reminisce
leverages the pre-exit mechanism to dynamically adjust em-
bedding granularity based on each sample’s characteristics.
It can predictively exit at the optimal layer to balance the
trade-off between accuracy and throughput. As shown in
Figure 6, compared to exiting all samples at a fixed layer,

5

Dongqi Cai, Shangguang Wang, Chen Peng, Zeling Zhang, Nicholas D. Lane, and Mengwei Xu

 �
 ��
������ ��!�����!����������

��	

��

���

��
� � ��

��
���

 �
 ��
������ ��!�����!����������

��	

��

���

���

��
� � ��

��
���

COCO FLICKR

w/o

fine

grained

w/o

fine

grained

Figure 7. Performance under different query latency bud-
gets.

COCO0

5

10

No
rm

al
ize

d
en

er
gy

 (×
) Naive MEM MEM BranchyNet Fluid Batch Ours

FLICKER0

2

4

6

8

CLOTHO0

5

10

15

HARSMART 0

5

10

Figure 8. Energy consumption.

the data-aware pre-exit mechanism improves retrieval ac-
curacy by up to 19.8%. The higher coarse-grained retrieval
performance is crucial for achieving optimal fine-grained
retrieval.

Effect of Speculative Fine-grained Query With a default
query candidate pool size of 10, retrieval accuracy using
filtered fine-grained embeddings is, on average, 35.5% higher
than the previous coarse-grained retrieval accuracy. This
improvement is due to the fact that over 95% of the targets
retrievable by full-sized MEMs are successfully retrieved
from the toplist of coarse-grained embeddings. As a result,
the embedding accuracy of Reminisce is comparable to that
of the full-sized MEM.

Impact of Query Latency Budget

Although query cost is negligible compared to embedding
cost in the long termÐsince queries occur less frequently
than daily always-on embeddingsÐit is immediately notice-
able to the user. Thus, we show Reminisce’s performance
under different query latency budgets in Figure 7. Query la-
tency consists of three components: text embedding, match-
ing, and fine-grained embedding. Baseline methods with
memory encoders require only the first two steps, typically
taking 2 seconds. With a higher query latency budget, we
can improve fine-grained embedding accuracy from 27% to
55%.
Additionally, similar to web cookies [35], the query pro-

cess can skip the complex fine-grained embedding when it is
repeated, making it more efficient for multi-query scenarios
where frequently queried items are retrieved faster. Once a
local embedding is queried, its embedding is permanently
upgraded.

System Cost

Energy Consumption Figure 8 shows the normalized
energy consumption of Reminisce and various baselines.

0

25

50

75

100

CP
U

tim
e

(m
in

)

Naive MEM Ours

0

5

10

15

20

En
er

gy
 (K

J)

0

250

500

750

1000

M
em

or
y

(M
B)

0

20

40

60

80

R@
1

Figure 9. Performance analysis during 30 minutes of Twitter
browsing. Device: 8GEN3 [30].

Reminisce reduces energy consumption by up to 18.2× and
13.1× on average compared to layerwise-executed baselines.
Even compared to naive MEM without layerwise execution,
Reminisce still achieves up to 3.3× energy savings on av-
erage. This is due to Reminisce’s ability to determine the
optimal number of layers for embedding and offload embed-
ding computation to the less frequent querying process.

Storage Cost We store the embeddings of the items in INT4
precision. Each embedding is 1024-dimensional, resulting
in a storage cost of approximately 5KB per item. Based on
the trace statistics in ğ, typical users encounter around 6000
images daily. Thus, the storage cost for image embeddings
is roughly 29.3MB per day. Annually, this amounts to about
10.4GB, which is comparable to the storage required for a
high-quality movie. In contrast, the current off-the-shelf
solution Rewind [36] consumes 14GB of storage per month
on average, as officially reported [37].

Case Study: Twitter Meme Retrieval

As with the previous datasets, we evaluated the performance
of Reminisce on the TWITTER dataset. A total of 828 figures
were embedded according to the trace data collected. Naive
MEM takes over an hour to complete the retrieval task on
a fully utilized CPU. In comparison, Reminisce achieves a
4× throughput improvement, completing the task within
27 minutes. Moreover, Reminisce demonstrates significant
resource savings, using 5× less memory and 10× less energy
than the baseline. This is due to sequentially loading layers
and reducing the total number of layers executed. Storing
these figure embeddings requires approximately 3MB, which
is comparable to the size of a single raw image. During the
query phase, the query latency is 0.5s, which is acceptable
for daily use, as surveyed. Our case study demonstrates that
Reminisce can provide high-quality embedding representa-
tion with highly optimized system performance in real-world
usage scenarios.

User Study: Mobile Application Trace

To further validate Reminisce, we conducted a user study by
collecting real user data and simulating the system’s perfor-
mance in embedding images generated during daily mobile
app usage4. Without Reminisce, the naive MEM system (in

4We do not account for charging time or the energy used by the applications

themselves to provide a more straightforward comparison between naive

MEM and Reminisce.

6

Ubiquitous Memory Augmentation via Mobile Multimodal Embedding System

09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00
0

20

40

60

80

100

Re
m

ai
ni

ng
 b

at
te

ry
 (%

)

0

2000

4000

6000

of

 im
ag

es

Viewed images
Processed images

(a) Naive MEM.

09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00
0

20

40

60

80

100

Re
m

ai
ni

ng
 b

at
te

ry
 (%

)

0

2000

4000

6000

of

 im
ag

es

Viewed images
Processed images

(b) Ours

Figure 10. Energy and throughput comparison of embedding
images viewed under real mobile traces.

INT4 precision) would require more than 3 battery charges
per day, and over 20% of the images would remain unembed-
ded due to time constraints. In contrast, Reminisce reduces
the number of required charges by 3×, allowing all daily
generated data to be embedded. This user study highlights
Reminisce’s ability to efficiently manage and embed large
volumes of data, reducing the burden on battery life and en-
suring that the vast majority of daily usage data is preserved
and embedded in real-time.

Discussion

In this work, we develop Reminisce, an efficient on-device
multimodal embedding system to function as a memory aug-
menting service. Extensive experiments and user studies
demonstrate that Reminisce significantly improves embed-
ding throughput and reduces energy consumption while
maintaining high retrieval accuracy, making it practical for
modern mobile devices.
We offload the full-sized embedding cost to the query

phase, which is infrequent and carries precise retrieval infor-
mation [2]. Only coarse-grained key information is preserved
using exited embedding models. This mirrors the human
brain, which retains key information in long-term memory
and recalls details only when necessary [38]. Different from
advanced sparsification or quantization optimizations, which
provides little to no benefit during inference due to the lim-
ited support of mobile hardware [39ś43], Reminisce can
be seamlessly integrated into off-the-shelf mobile applica-
tions to enhance user experience without requiring complex
hardware modifications.

The ability of Reminisce to operate within the constraints
of devices such as smartphones and Raspberry Pi 4B, while
maintaining high-quality embeddings, highlights its practi-
cality for real-world applications. For instance, mobile users

can now efficiently index and recall multimedia content, fos-
tering new use cases in personal assistants, health tracking,
etc.
A pivotal advantage of Reminisce lies in its on-device

processing capability, which eliminates the need to offload
sensitive data to cloud services. This significantly mitigates
risks associated with data breaches and unauthorized ac-
cess, addressing a critical concern in privacy-preserving AI
systems.
However, due to the extra memory overhead of batching

parallelism, Reminisce has a slightly higher peak memory
footprint compared to the naive layer-wise baseline. Detailed
information is provided in the Appendix. Fortunately, it is
still within a practical range, e.g., 92M for embedding IMU
information, which is below the average Android application
memory consumption of 100M as reported in 2019 [17, 44].
After 5 years, the mobile RAM capacity has increased signif-
icantly, with up to 24GB available on high-end devices [45].
Less than 300MB of peaky memory usage is affordable for
most modern mobile devices.
This study provides the following takeaway messages:

• Weprototype the firstMEM-empoweredmobile search
service architecture. Through user studies and pilot
experiments, we identify challenges related to low
embedding throughput and high energy consump-
tion5.
• We introduce Reminisce, an efficient on-device mul-

timodal embedding system that addresses these chal-
lenges. Reminisce incorporates three novel techniques:
preemptive exit for dynamic execution scheduling,
progressive model healing for cache optimization,
and speculative retrieval to correct premature exits.
• Extensive experiments demonstrate that Reminisce
significantly improves throughput and reduces en-
ergy consumption while maintaining search perfor-
mance, making it practical for modern mobile de-
vices.

Methods

Reminisce Overview

As shown in Figure 11, Reminisce provides a memory en-
coder for clients to build coarse-grained embeddings offline,
while the rest of the model functions as a live encoder for
precise online retrieval. (1) System developer preparation:

Developers first refine widely-used pretrained multimodal
models to reduce the number of layers needed for token
prediction. The refined model is then deployed to mobile
devices for offline embedding. (2) Client offline embedding:

Users employ part of the memory encoder to build superficial
embeddings for pre-exit prediction. After pre-exit, samples
with the same exits are batched and processed layer by layer

5Codebases and collected trace data have been made public.

7

Dongqi Cai, Shangguang Wang, Chen Peng, Zeling Zhang, Nicholas D. Lane, and Mengwei Xu

Cache reuse

Memory Encodere

② Data-aware pre-exit predictor (3.2)

Live Encoder

Message Query

“Pre-exit”

model

Memory Encoder Live Encoder

Full Encoder

Memory Encoder

①Progressive LoRA healing (3.3)

Superficial

EncoderDeployment

Memory Encoder

Cache reuse

Match #1

Cache reuse
Match #2

Result

③ Speculative fine-grained retrieval(3.4)

System developer preparation Client offline embedding Client online query

Superficial embedding Coarse-grained embedding Fine-grained embedding

Memory EncoderMemory Encoder

Figure 11. Overview of Reminisce.

Traditional EE literature

Batch

Embed

Pre-exit
Predictor

Superficial
Embedding

Coarse-grained
Embedding

Logit
Not confident

Pipeline

Exits

info Ours

Exit infoLoad

Comp.

Load Load

Load Load

Load Load Load

Figure 12. Data-aware pre-exit workflow.

0 500 1000 1500
Data ID

32

16

1In
de

x
of

 e
xi

te
d

la
ye

r

(a) Exit stastics.

0 10 20 30
of superficial layer

15

20

25

30

of

 p
re

di
ct

ed
 la

ye
r

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 a
cc

ur
ac

y

(b) Predictor performance.

Figure 13. (a) Each dataset has a different optimal exit point.
(b) The data-aware predictor is well-trained to assign the
appropriate exit for each sample.

through pipeline scheduling to generate coarse-grained em-
beddings. (3) Client online query: During the query phase,
the query is embedded for matching. Likely candidates are
filtered and refined from the coarse-grained embeddings,
which are then matched with the query embedding to final-
ize retrieval.

Data-aware Pre-exit Predictor

Traditionally, most early-exit methods decide whether to
exit at the end of each branch computation [21, 46, 47]. This
approach limits hardware acceleration and batching, as exit
points vary by data, leading to inconsistent workloads within
batches and memory fragmentation [21, 48, 49]. Although
some predictive models for CNNs [49] predict exit values in
advance, they cannot scale toMEMs due to their convolution-
specific design. In this work, we propose a unified, light-
weight early-exit predictor model for all modalities, derived
from intermediate data embeddings. The data-aware pre-exit
predictor preemptively decides the exit point for MEMs, en-
abling batch scheduling for better parallelism and helping
to amortize and hide loading time.

Algorithm 1: Our Pre-exit Predictor

input :Superficial Embedding Layer 𝑁 ;

Predict model 𝜙𝑆 ;

Burst-in Streaming Input, X.

output :Embedding, E.

1 Function Data-aware_Coarse-grained_Embedding(𝑁 , 𝜙𝑆 , X):

2 Embedding← Batched_Layerwise_Encoding(0, 𝑁 , X);

3 Predicted Exit 𝑒 ← 𝜙𝑆 (E) ;

4 Group X into X𝑒 with the same exit seperately;

5 forall X𝑒 do

6 Embedding← Batched_Layerwise_Encoding(𝑁 , 𝑒 , X𝑒);

7 Store Embedding E in the disk.

8 Function Batched_Layerwise_Encoding(𝑖 , 𝑗 , X):

9 X𝐵 ← Batching X;

10 forall X𝐵 do

11 while 𝑖<𝑗 do

12 Encode X𝑖
𝑏
; load layer 𝑖+1 concurrently;

13 Embedding← 𝑃𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 (Intermediate results);

14 return Embedding.

Data-aware coarse-grained embedding granularity Dif-
ferent data contains varying amounts of information content.
Unlike previous work that defines predictive models manu-
ally, we propose using intermediate embeddings to predict
the exit value without supervision. First, we build the fine-
grained embedding F𝑥 for each data point 𝑥 ∈ X as a proxy
query label. Next, we feed the input into the pre-trained
MEM layer by layer, obtaining a set of coarse-grained em-
beddings C𝑖𝑥 at different granularities 𝑖 ∈ range(layers). We
then measure the similarity between the fine-grained and
coarse-grained embeddings. When the similarity between F𝑥
and C𝑖𝑥 becomes the largest among F𝑥 and C𝑖

X
. query retrieves

C𝑖𝑥 from C𝑖
𝑋
successfully. We mark it as a valid embedding

exit. The intermediate embeddings are fed into the predictor
model, and an MLP model is trained to predict its exit value.
This method outperforms fixed early-exit baselines, as will
be shown in ğ.

Batch-friendly and pipeline execution As shown in Fig-
ure 12, with the data-aware pre-exit predictor, we can predict
the exit value before embedding, enabling efficient batch-
ing of input data. In addition to early-exit-specific batching,
we propose pipelining the layer-by-layer encoding process,
where loading and embedding are conducted simultaneously.

8

Ubiquitous Memory Augmentation via Mobile Multimodal Embedding System

Memory

Encoder L
o
r
a

x

Memory

Encoder L
o
r
a

Memory

Encoder L
o
r
a

h

Memory

Encoder L
o
r
a

Memory

Encoder L
o
r
a

Exit #1 Exit #2

(Previous)

Exit #2

(Ours)

From

scratch

Reuse

h of #1

Storage

Coarse-grained

Embedding

Fine-grained

Embedding

①

②

③

Figure 14. Comparison between Progressive LoRA and pre-
vious methods.

Pre-exit Predictor in detail We summarize the use of the
pre-exit predictor in Algorithm 1. First, we load Layer𝑖 and
encode all input data as a batch, while Layer𝑖+1 is loaded
concurrently to minimize loading time. This process iterates
until all 𝑁 layers are loaded. Next, we feed the intermediate
embeddings (i.e., superficial embeddings) to the predictor
model. Data are then batched according to the predicted exit
values. These steps are repeated for each batch until all data
reach their predicted exits.

Pre-exit predictor cost Training the predictor is efficient,
requiring only tens of iterations on hundreds of samples,
taking just a few minutes on a single GPU. The trained pre-
dictor is lightweight, with a memory footprint of around
1MB. The main concern is the cost of computing the superfi-
cial embedding. Fortunately, this embedding can be reused
for subsequent coarse-grained embeddings.

Micro Experiments are conducted to demonstrate the ef-
fectiveness of the pre-exit predictor. As shown in Figure 13b,
prediction accuracy improves with the increase of superficial
embedding layers. As indicated by Figure 13a, most samples
require the complexity of more than 7 layers. With 𝑁 = 7,
the predicted accuracy is 85%, the average predicted layer
is 15.5, and the average actual layer is 16.5. An interesting
finding is that as the intermediate embeddings are fed layer
by layer, the deeper the layers, the more accurately the pre-
dictor model can determine the exit value. This improvement
occurs because deeper layer embeddings are more discrimi-
native and better suited for predicting the final embedding.

Progressive LoRA Healing

Original MEMs are not designed for early exit, as they tend
to distribute computation across all layers. As a result, most
data requires many layers before exiting. We propose a pro-
gressive LoRA approach to heal the model, reducing the
number of layers needed for each token.

Parameter-efficient LoRA Healing Previous early-exit
healing approaches [50] use the parameter-efficient fine-
tuning method, LoRA [51], to distill knowledge into lower
layers, reducing the number of layers required for each token.
Naive LoRA tuning fine-tunes a separate LoRA suite for each
early-exit layer. For instance, with 32 exits, 32 LoRA suites
are required. While this ensures good performance, it has a

� �� �� ��

��������������������������� ��

�

���

���

	��

��
��
���
��

��
��
 ���������

�������

Sup.

Point

Larger step

is better

Smaller step

is better

Step pivot

Figure 15. The progressive steps affect tuning performance.

significant drawback: the embedding from layer 𝑛 cannot be
reused to compute the embedding for layer 𝑛 + 1. As illus-

trated in Figure 14, this occurs because LoRA 𝑙
1,...,𝑛
𝑛 for layer

𝑛 is not the same as the first 𝑛 layers of LoRA 𝑙
1,...,𝑛+1
𝑛+1 . Unlike

standard embeddings, which complete all layers sequentially,
early-exit methods must check whether each layer is the fi-
nal one. If layer 𝑛’s embedding is incompatible with layer
𝑛 + 1, the early-exit method must recompute the embedding
for layer 𝑛 + 1 from scratch, negating many of the benefits
of early exit.

On cloud servers, computation is not a major issue due to
their high processing power, and reducing model weights
to alleviate I/O pressure is the primary concern. However,
for mobile devices with limited computational power, I/O
pressure is less of a concern since they typically serve only
one user at a time.

Progressive LoRA healing (P-LoRA) Reminisce pro-
poses a progressive LoRA healing method to address this
issue, aiming to use a single LoRA suite for all exits. To
achieve this, we tune the LoRA layer by layer. For each exit,
we tune only the LoRA for the current exit while keeping
the previous exits’ LoRA fixed. Since the tunable parame-
ters are fewer than the fixed ones, the healing capacity is
weaker compared to using separate LoRA suites, which neg-
atively impacts convergence (i.e., fine-grained embedding)
performance, as shown in Figure 15. To mitigate this, instead
of tuning one LoRA layer at a time, we progressively tune
more LoRA layers at later exits. Similar to the window size
in convolutional layers, we define the number of tuned LoRA
layers as the LoRA step.

P-LoRA step decision As shown in Figure 15, the optimal
healing step varies across exit layers. In general, the larger
the 𝑛, the greater the per-step healing capacity, due to the
increased number of tunable parameters. However, if step 4
is applied to all exits, exits 2 and 3 will miss opportunities for
healing. This is acceptable for the top layers, as they already
have a strong feature representation from earlier healing.
Larger steps benefit later layers by improving convergence
performance. For smaller exits, earlier features are still weak
and require healing at each exit.
To determine the optimal step during training, we use

information from the predicted exit statistics. We set the
training step at the pivot of the predicted exit statistics, en-
suring that most exits are healed with an appropriate step

9

Dongqi Cai, Shangguang Wang, Chen Peng, Zeling Zhang, Nicholas D. Lane, and Mengwei Xu

� 	
 � �

����&�#��!#�������� ���%�#&
�

���

����

��
��
�
"�
�$

��	�

����

����

��
�%
#�
�&

���
����

IMU

HARSMART

(a) Single modality

Text-Vision

TWITTER

(b) Cross modality

Figure 16. Retrieval accuracy across different embedding
granularities, i.e., embeddings generated by different MEM
layer exits.

size. This approach prioritizes smaller exits, aligning with the
heuristic that most data exits occur at earlier layers, which
require more focused healing. At later stages, larger steps
enhance fine-grained performance during queries without
significantly affecting exit flexibility.

Training Details The healing P-LoRA is designed to be
parameter-efficient and highly transferable. Application de-
velopers can customize the personalized healing adapter
during the testing phase. During deployment, healing occurs
iteratively, and embedding granularity can be updated in
real time to better fit the data and synchronize with their
representations. In this work, for simplicity, the embedding
granularity predictor was trained on zero-shot embeddings.
The training objective is the fine-grained embedding, not the
query embedding. We leave the output layer untuned to mit-
igate the dynamic embedding mismatch issue. Even without
the healing P-LoRA, we demonstrate that Reminisce can
still achieve usable retrieval performance.

Speculative Fine-grained Retrieval

With coarse-grained embeddings, we can filter out poten-
tial candidates. Further fine-grained embeddings are then
processed on these filtered candidates to complete the final
retrieval. However, using the default query embedding with
a full-capacity encoder does not achieve precise top-1 re-
trieval (R@1), as shown in Figure 16. This poor performance
stems from two unique challenges.
Challenge 1: Reduced embedding capacity. Even if we

modify the model to predict early and align it with the full
embedding, exiting early during inference inevitably reduces
accuracy compared to full-capacity embedding. Fortunately,
while coarse-grained embeddings may not achieve precise
top-1 retrieval, they can filter out the most likely candidates
when expanding the retrieval range to top-10 as shown in
Figure 16a. Thus, this challenge can be alleviated by refining
the coarse-grained embeddings filtered with query informa-
tion.
Challenge 2: Unbalanced embedding distribution. As de-

scribed in ğ, different data exits at different layers, leading
to unbalanced embeddings in storage. Although each em-
bedding is fine-tuned to approximate the full embedding,
embeddings from different exit layers retain unique charac-
teristics. For example, samples from similar exit layers tend

Tran.
Local

data

Step 1: Speculative filtering

Tran.

Transformer blocks of memory encoder

… Tran. Tran.

Query Tran. Tran.…

Unbalanced coarse-grained

embedding space
Cand.

#1

Cand.

#1

Cand.

#1

Cand.

#1

Candidate

lists

Fine-grained

embedding

Tran. Tran.

Live encoder
Cache reuse

Tran. Tran.
Cache reuse

Step 2: Verifying Step 3: Correcting

Tran.Tran.

Figure 17. Coarse-grained embeddings are speculatively fil-
tered. The highest-ranking embedding candidates are refined
to fine-grained embeddings for final retrieval.

to have similar embedding distributions. As a result, a query
embedding from a full-capacity encoder cannot retrieve these
embeddings precisely. This phenomenon is shown in Fig-
ure 16. For single-modality retrieval on the HARSMART
dataset, using the full-capacity MEM to retrieve filtered em-
beddings results in a top-1 accuracy of only 24.9%, 56.6%
lower than using a 2-layer query embedding, since over 99%
of samples exit before 3 layers during local embedding. The
same phenomenon occurs in the cross-modal TWITTER
dataset.

Speculative retrieval Inspired by speculative decoding [52],
a popular acceleration technique for language models, we
propose feeding the query embedding at different granu-
larities to achieve balanced filtering, as shown in Figure 17.
(1) Speculative filtering: The top 𝑘 candidates at each query
granularity are preserved for the second round of filtering.
(2) Global verifying: The second round selects the final top 𝑘
candidates from all granularities. If a sample ID is duplicated,
the candidate with the next highest score is preserved. (3)
Fine-grained correcting: Finally, the coarse-grained embed-
dings are refined using the rest of the model to generate
fine-grained embeddings, which are then matched with the
query for more precise retrieval.

Intermediate results reuse As shown in Figure 14, the
coarse-grained embedding can be reused for fine-grained
embedding. However, due to the down-sampling structure of
the output head, the coarse-grained embedding cannot be di-
rectly used for fine-grained embedding. To simplify this, we
store the intermediate activations before each down-sample
layer. This approach allows reusing the superficial embed-
ding to reduce the cost of data-aware coarse-grained embed-
ding, improving embedding throughput by up to 30%. It also
extends the coarse-grained embedding to fine-grained em-
bedding without encoding from scratch, accelerating query
latency by up to 70%.

Cache analysis The drawback of this approach is the need
to cache intermediate activations. Fortunately, we can quan-
tize them to INT4 and de-quantize them during reuse, which
takes significantly less time than re-computation (around
10 ms per embedding). During prediction, the activations
can remain in RAM. Once coarse-grained embedding begins,
these cached activations replace the intermediate variables
typically stored in RAM during embedding, so no additional

10

Ubiquitous Memory Augmentation via Mobile Multimodal Embedding System

peak memory footprint is required. After the process ends,
the activations are released sequentially. For cache reuse in
the fine-grained embedding procedure, the activations are
temporarily stored in storage, which is less constrained than
RAM, until the query occurs. The loading time is approxi-
mately 1 ms for 10 activations. Once an image is queried, it
is updated to the fine-grained embedding, and its storage
can be freed.

Data Availability

The datasets involved in this study are all publicly available
ones. The collected traces are available at https://www.kaggle.com/

datasets/dongqicai/mobile-trace-of-viewed-images. The ac-
cess to other datasets can be found in the Result Experiment
Setup section.

Code Availability

Codes for this work are available on a public repository https:
//github.com/caidongqi/Mobile-Search-Engine/tree/pc. We
also provide sufficient details in the Methods and Supple-
mentary Information for implementing experiments in this
work.

References
[1] Mengwei Xu, Tiantu Xu, Yunxin Liu, and Felix Xiaozhu Lin, łVideo

analytics with zero-streaming cameras,ž in 2021 USENIX Annual Tech-

nical Conference (USENIX ATC 21). July 2021, pp. 459ś472, USENIX

Association.

[2] Michiel De Jong, Yury Zemlyanskiy, Nicholas FitzGerald, Joshua

Ainslie, Sumit Sanghai, Fei Sha, andWilliamWCohen, łPre-computed

memory or on-the-fly encoding? a hybrid approach to retrieval aug-

mentation makes the most of your compute,ž in International Confer-

ence on Machine Learning. PMLR, 2023, pp. 7329ś7342.

[3] Gautier Izacard and Edouard Grave, łLeveraging passage retrieval

with generative models for open domain question answering,ž in

Proceedings of the 16th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics: Main Volume, Paola Merlo, Jorg

Tiedemann, and Reut Tsarfaty, Eds., Online, Apr. 2021, pp. 874ś880,

Association for Computational Linguistics.

[4] Fengling Li, Lei Zhu, Tianshi Wang, Jingjing Li, Zheng Zhang, and

Heng Tao Shen, łCross-modal retrieval: a systematic review of meth-

ods and future directions,ž arXiv preprint arXiv:2308.14263, 2023.

[5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel

Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela

Mishkin, Jack Clark, et al., łLearning transferable visual models from

natural language supervision,ž in International conference on machine

learning. PMLR, 2021, pp. 8748ś8763.

[6] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh,

Kalyan Vasudev Alwala, Armand Joulin, and Ishan Misra, łImage-

bind: One embedding space to bind them all,ž in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023,

pp. 15180ś15190.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin, łAttention

is all you need,ž Advances in neural information processing systems,

vol. 30, 2017.

[8] Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Meng-

wei Xu, and Xuanzhe Liu, łEmpowering 1000 tokens/second on-device

llm prefilling with mllm-npu,ž arXiv preprint arXiv:2407.05858, 2024.

[9] Xiang Li, Zhenyan Lu, Dongqi Cai, Xiao Ma, and Mengwei Xu, łLarge

language models on mobile devices: Measurements, analysis, and

insights,ž in Proceedings of theWorkshop on Edge andMobile Foundation

Models, 2024, pp. 1ś6.

[10] Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang, Xin Yuan, Zeling

Zhang, Xiang Li, Dingge Zhang, HanziMei, Xianqing Jia, et al., łMobile

foundation model as firmware,ž in Proceedings of the 30th Annual

International Conference on Mobile Computing and Networking, 2024,

pp. 279ś295.

[11] Mengwei Xu, Dongqi Cai, Wangsong Yin, Shangguang Wang, Xin

Jin, and Xuanzhe Liu, łResource-efficient algorithms and systems of

foundation models: A survey,ž ACM Comput. Surv., Nov. 2024, Just

Accepted.

[12] Eric Fassbender and Wolfgang Heiden, łThe virtual memory palace,ž

Journal of Computational Information Systems, vol. 2, no. 1, pp. 457ś464,

2006.

[13] CNBC, łApple apologizes for listening to Siri conversations,ž

https://www.cnbc.com/2019/08/28/apple-apologizes-for-listening-

to-siri-conversations.html, 2019, Accessed: 2024-09-06.

[14] Nanyi Fei, Zhiwu Lu, Yizhao Gao, Guoxing Yang, Yuqi Huo, Jingyuan

Wen, Haoyu Lu, Ruihua Song, Xin Gao, Tao Xiang, et al., łTowards

artificial general intelligence via a multimodal foundation model,ž

Nature Communications, vol. 13, no. 1, pp. 3094, 2022.

[15] Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Li-

juanWang, Jianfeng Gao, et al., łMultimodal foundation models: From

specialists to general-purpose assistants,ž Foundations and Trends® in

Computer Graphics and Vision, vol. 16, no. 1-2, pp. 1ś214, 2024.

[16] Chameleon Team, łChameleon: Mixed-modal early-fusion foundation

models,ž 2024.

[17] łAndroid: Low memory killer dae- mon,ž https://source.android.com/

docs/core/perf/lmkd, 2022.

[18] Rongjie Yi, Xiang Li, and Mengwei Xu, łmllm,ž https://github.com/

UbiquitousLearning/mllm, 2024.

[19] Hui Ni and The ncnn contributors, łncnn,ž June 2017.

[20] Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dan Su, Chenhui

Chu, and Dong Yu, łMm-llms: Recent advances in multimodal large

language models,ž arXiv preprint arXiv:2401.13601, 2024.

[21] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung,

łBranchynet: Fast inference via early exiting from deep neural net-

works,ž in 2016 23rd international conference on pattern recognition

(ICPR). IEEE, 2016, pp. 2464ś2469.

[22] Alexandros Kouris, Stylianos I Venieris, Stefanos Laskaridis, and

Nicholas D Lane, łFluid batching: Exit-aware preemptive serv-

ing of early-exit neural networks on edge npus,ž arXiv preprint

arXiv:2209.13443, 2022.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-

ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick, łMicrosoft

coco: Common objects in context,ž in Computer VisionśECCV 2014:

13th European Conference, Zurich, Switzerland, September 6-12, 2014,

Proceedings, Part V 13. Springer, 2014, pp. 740ś755.

[24] Aditya Joshi, łFlickr 8k Dataset for Image Captioning,ž https://

www.kaggle.com/datasets/adityajn105/flickr8k, 2020, Accessed: 2024-

09-06.

[25] Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen, łClotho:

An audio captioning dataset,ž in ICASSP 2020-2020 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2020, pp. 736ś740.

[26] Mayur Sonawane, Sahil Rajesh Dhayalkar, Siddesh Waje, Soyal

Markhelkar, Akshay Wattamwar, and Seema C. Shrawne, łHuman

activity recognition using smartphones,ž 2024.

[27] Yuhao Du, Muhammad Aamir Masood, and Kenneth Joseph, łUnder-

standing visual memes: An empirical analysis of text superimposed

on memes shared on twitter,ž in Proceedings of the International AAAI

Conference on Web and Social Media, 2020, vol. 14, pp. 153ś164.

11

https://www.kaggle.com/datasets/dongqicai/mobile-trace-of-viewed-images
https://www.kaggle.com/datasets/dongqicai/mobile-trace-of-viewed-images
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc
https://www.cnbc.com/2019/08/28/apple-apologizes-for-listening-to-siri-conversations.html
https://www.cnbc.com/2019/08/28/apple-apologizes-for-listening-to-siri-conversations.html
https://source.android.com/docs/core/ perf/lmkd
https://source.android.com/docs/core/ perf/lmkd
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://www.kaggle.com/datasets/adityajn105/flickr8k

Dongqi Cai, Shangguang Wang, Chen Peng, Zeling Zhang, Nicholas D. Lane, and Mengwei Xu

[28] NVIDIA Corporation, łJetson Orin,ž https://www.nvidia.com/en-

us/autonomous-machines/embedded-systems/jetson-orin/, 2022, Ac-

cessed: 2024-09-06.

[29] Raspberry Pi Foundation, łRaspberry Pi 4 Model B,ž https://

www.raspberrypi.com/products/raspberry-pi-4-model-b/, 2019, Ac-

cessed: 2024-09-06.

[30] Xiaomi, łRedmi note 12 turbo specifications,ž https://www.mi.com/

redmi-note-12-turbo, 2023, Accessed: 2024-09-06.

[31] Android Developers, łAccessibility Services,ž https:

//developer.android.com/guide/topics/ui/accessibility/service,

2024, Accessed: 2024-09-06.

[32] Agus Kurniawan and Agus Kurniawan, łIntroduction to nvidia jetson

nano,ž IoT Projects with NVIDIA Jetson Nano: AI-Enabled Internet of

Things Projects for Beginners, pp. 1ś6, 2021.

[33] Edge AI and Vision Alliance, łIs the new nvidia jet-

son agx orin really a game-changer? we benchmarked it,ž

https://www.edge-ai-vision.com/2022/04/is-the-new-nvidia-

jetson-agx-orin-really-a-game-changer-we-benchmarked-it/, 2022,

Accessed: 2024-09-06.

[34] Dongqi Cai, Qipeng Wang, Yuanqiang Liu, Yunxin Liu, Shangguang

Wang, and Mengwei Xu, łTowards ubiquitous learning: A first mea-

surement of on-device training performance,ž in Proceedings of the

5th International Workshop on Embedded and Mobile Deep Learning,

2021, pp. 31ś36.

[35] Aaron Cahn, Scott Alfeld, Paul Barford, and Shanmugavelayutham

Muthukrishnan, łAn empirical study of web cookies,ž in Proceedings of

the 25th international conference on world wide web, 2016, pp. 891ś901.

[36] Rewind AI, łRewind AI,ž https://www.rewind.ai, 2023, Accessed:

2024-09-06.

[37] Rewind, łHow does rewind compression work?,ž https:

//help.rewind.ai/en/articles/6706118-how-does-rewind-

compression-work, 2022, Accessed: 2024-09-06.

[38] Alison K Banikowski and Teresa A Mehring, łStrategies to enhance

memory based on brain-research,ž Focus on Exceptional Children, vol.

32, no. 2, pp. 1ś16, 1999.

[39] Liqiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang,

and Yun Liang, łSanger: A co-design framework for enabling sparse

attention using reconfigurable architecture,ž inMICRO-54: 54th Annual

IEEE/ACM International Symposium on Microarchitecture, 2021, pp.

977ś991.

[40] Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo

Kang, Ruohan Yan, Hasan Genc, Grace Dinh, Qijing Huang, Kurt

Keutzer, Michael W Mahoney, et al., łFull stack optimization of trans-

former inference: a survey,ž arXiv preprint arXiv:2302.14017, 2023.

[41] Yang Sun, Wei Hu, Fang Liu, Min Jiang, FeiHu Huang, and Dian Xu,

łSpeformer: An efficient hardware-software cooperative solution for

sparse spectral transformer,ž in 2022 IEEE 9th International Conference

on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th Inter-

national Conference on Edge Computing and Scalable Cloud (EdgeCom).

IEEE, 2022, pp. 180ś185.

[42] Giorgos Armeniakos, Georgios Zervakis, Dimitrios Soudris, and Jörg

Henkel, łHardware approximate techniques for deep neural network

accelerators: A survey,ž ACM Computing Surveys, vol. 55, no. 4, pp.

1ś36, 2022.

[43] Hanrui Wang, Zhekai Zhang, and Song Han, łSpatten: Efficient sparse

attention architecture with cascade token and head pruning,ž in

2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA). IEEE, 2021, pp. 97ś110.

[44] Niel Lebeck, Arvind Krishnamurthy, Henry M Levy, and Irene Zhang,

łEnd the senseless killing: Improving memory management for mobile

operating systems,ž in 2020 USENIX Annual Technical Conference

(USENIX ATC 20), 2020, pp. 873ś887.

[45] ASUS, łROG Phone 9 Pro,ž https://rog.asus.com/phones/rog-phone-

9-pro/, 2024, Accessed: 2024-12-20.

[46] Stefanos Laskaridis, Alexandros Kouris, and Nicholas D Lane, łAdap-

tive inference through early-exit networks: Design, challenges and

directions,ž in Proceedings of the 5th International Workshop on Em-

bedded and Mobile Deep Learning, 2021, pp. 1ś6.

[47] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer,

Bram Wasti, Liangzhen Lai, Anas Mahmoud, Bilge Acun, Saurabh

Agarwal, Ahmed Roman, et al., łLayer skip: Enabling early exit infer-

ence and self-speculative decoding,ž arXiv preprint arXiv:2404.16710,

2024.

[48] Xiangjie Li, Chenfei Lou, Yuchi Chen, Zhengping Zhu, Yingtao Shen,

Yehan Ma, and An Zou, łPredictive exit: Prediction of fine-grained

early exits for computation-and energy-efficient inference,ž in Pro-

ceedings of the AAAI Conference on Artificial Intelligence, 2023, vol. 37,

pp. 8657ś8665.

[49] Meiqi Wang, Jianqiao Mo, Jun Lin, Zhongfeng Wang, and Li Du,

łDynexit: A dynamic early-exit strategy for deep residual networks,ž

in 2019 IEEE International Workshop on Signal Processing Systems (SiPS).

IEEE, 2019, pp. 178ś183.

[50] Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso,

and Daniel A Roberts, łThe unreasonable ineffectiveness of the deeper

layers,ž arXiv preprint arXiv:2403.17887, 2024.

[51] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi

Li, Shean Wang, Lu Wang, and Weizhu Chen, łLora: Low-rank adap-

tation of large language models,ž arXiv preprint arXiv:2106.09685,

2021.

[52] Yaniv Leviathan,Matan Kalman, and YossiMatias, łFast inference from

transformers via speculative decoding,ž in International Conference on

Machine Learning. PMLR, 2023, pp. 19274ś19286.

[53] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing

Xiang, Bowen Zhou, and Yoshua Bengio, łA structured self-attentive

sentence embedding,ž arXiv preprint arXiv:1703.03130, 2017.

[54] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,

łBert: Pre-training of deep bidirectional transformers for language

understanding,ž arXiv preprint arXiv:1810.04805, 2018.

[55] Alexey DOSOVITSKIY, łAn image is worth 16x16 words: Transform-

ers for image recognition at scale,ž arXiv preprint arXiv:2010.11929,

2020.

[56] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine

McLeavey, and Ilya Sutskever, łRobust speech recognition via large-

scale weak supervision,ž in International Conference on Machine Learn-

ing. PMLR, 2023, pp. 28492ś28518.

[57] Danfeng Hong, Bing Zhang, Xuyang Li, Yuxuan Li, Chenyu Li, Jing

Yao, Naoto Yokoya, Hao Li, Pedram Ghamisi, Xiuping Jia, et al., łSpec-

tralgpt: Spectral remote sensing foundation model,ž IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2024.

[58] Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao

Li, Caiwen Ding, Yanzhi Wang, Yi Liang, and Dongkuan Xu, łYou

need multiple exiting: Dynamic early exiting for accelerating unified

vision language model,ž in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2023, pp. 10781ś10791.

[59] Omar Hamed, Souhail Bakkali, Marie-Francine Moens, Matthew

Blaschko, and Jordy Van Landeghem, łMultimodal adaptive infer-

ence for document image classification with anytime early exiting,ž

arXiv preprint arXiv:2405.12705, 2024.

[60] Soheil Hor and Amin Arbabian, łSense, predict, adapt, repeat: A

blueprint for design of new adaptive ai-centric sensing systems,ž arXiv

preprint arXiv:2312.07602, 2023.

[61] Jan-Paul Huttner, Kathrin Robbert, and Susanne Robra-Bissantz, łIm-

mersive ars memoria: evaluating the usefulness of a virtual memory

palace,ž 2019.

[62] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guo-

hong Liu, Jiacheng Liu, Wenxing Xu, Xiang Wang, Yi Sun, et al., łPer-

sonal llm agents: Insights and survey about the capability, efficiency

and security,ž arXiv preprint arXiv:2401.05459, 2024.

12

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.mi.com/redmi-note-12-turbo
https://www.mi.com/redmi-note-12-turbo
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://www.edge-ai-vision.com/2022/04/is-the-new-nvidia-jetson-agx-orin-really-a-game-changer-we-benchmarked-it/
https://www.edge-ai-vision.com/2022/04/is-the-new-nvidia-jetson-agx-orin-really-a-game-changer-we-benchmarked-it/
https://www.rewind.ai
https://help.rewind.ai/en/articles/6706118-how-does-rewind-compression-work
https://help.rewind.ai/en/articles/6706118-how-does-rewind-compression-work
https://help.rewind.ai/en/articles/6706118-how-does-rewind-compression-work
https://rog.asus.com/phones/rog-phone-9-pro/
https://rog.asus.com/phones/rog-phone-9-pro/

Ubiquitous Memory Augmentation via Mobile Multimodal Embedding System

[63] Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin

Fu, and Gang Yu, łAppagent: Multimodal agents as smartphone users,ž

arXiv preprint arXiv:2312.13771, 2023.

[64] Dongfang Liu, Yiming Cui, Zhiwen Cao, and Yingjie Chen, łIndoor

navigation for mobile agents: A multimodal vision fusion model,ž in

2020 international joint conference on neural networks (IJCNN). IEEE,

2020, pp. 1ś8.

[65] łMicrosoft recall,ž https://support.microsoft.com/en-us/windows/

retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-

2eb8ac48701c, 2024.

[66] łApple,ž https://www.apple.com/newsroom/2023/12/report-2-point-

6-billion-records-compromised-by-data-breaches-in-past-two-

years/, 2022.

[67] Zhengcong Fei, Xu Yan, ShuhuiWang, and Qi Tian, łDeecap: Dynamic

early exiting for efficient image captioning,ž in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022,

pp. 12216ś12226.

[68] Weihao Cui, Han Zhao, Quan Chen, Hao Wei, Zirui Li, Deze Zeng,

Chao Li, and Minyi Guo, ł{DVABatch}: Diversity-aware {Multi-

Entry}{Multi-Exit} batching for efficient processing of {DNN} ser-

vices on {GPUs},ž in 2022 USENIX Annual Technical Conference

(USENIX ATC 22), 2022, pp. 183ś198.

[69] Rongkang Dong, Yuyi Mao, and Jun Zhang, łResource-constrained

edge ai with early exit prediction,ž Journal of Communications and

Information Networks, vol. 7, no. 2, pp. 122ś134, 2022.

[70] Fabawi, łImagebind-lora: Fine-tuning "imagebind one embedding

space to bind them all" with lora,ž 2023, Accessed: 2024-12-06.

[71] Chunyuan Qin, Chuan Deng, Jiashun Huang, Kunxian Shu, and

Mingze Bai, łAn efficient faiss-based search method for mass spectral

library searching,ž in 2020 3rd International Conference on Advanced

Electronic Materials, Computers and Software Engineering (AEMCSE).

IEEE, 2020, pp. 513ś518.

13

https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c
https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c
https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c
https://www.apple.com/newsroom/2023/12/report-2-point-6-billion-records-compromised-by-data-breaches-in-past-two-years/
https://www.apple.com/newsroom/2023/12/report-2-point-6-billion-records-compromised-by-data-breaches-in-past-two-years/
https://www.apple.com/newsroom/2023/12/report-2-point-6-billion-records-compromised-by-data-breaches-in-past-two-years/

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

Appendix.pdf

https://assets-eu.researchsquare.com/files/rs-5686668/v1/ac0bbf2fdfa8ac3f7bdd90e1.pdf

	Abstract
	References

