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Background, Applications and Related
Works
Unified multimodal embedding Embedding was initially
proposed to vectorize text data for understanding similarities
between different texts [1]. Large language models use em-
bedding layers to generate text embeddings [2, 3]. Similarly,
vision, audio, and sensor data can also be transformed into
vectorized embeddings [4–6]. However, embedding meth-
ods focused on a single modality cannot access information
across different modalities due to the gap between their em-
bedding spaces.

To bridge this gap, multimodal embedding models (MEMs)
have been developed to unify different modalities into a sin-
gle embedding space, enhancing the model’s ability to un-
derstand and bind multimodal inputs. CLIP [7] aligns text
and vision by jointly training on image-text pairs, using con-
trastive learning to map both modalities into a shared space
while maintaining their distinction through a dual-tower ar-
chitecture. ImageBind [8] extends this to align six modalities,
including text, vision, audio, depth, thermal, and IMU read-
ings. Each modality is processed by a separate encoder, and
the embeddings are fused in a multimodal head to generate
a unified embedding. ImageBind demonstrates strong zero-
shot classification and retrieval performance across these
modalities, matching or outperforming single-modality mod-
els. This is achieved through training on large-scale multi-
modal data.
According to Zhang et al. [9], over 80% (35 out of 43) of

multimodal foundation models utilize ImageBind or its sub-
set, CLIP, as their modality encoder. This widespread adop-
tion highlights the efficiency and effectiveness of ImageBind
in managing multimodal data. Further optimizations have
enhanced the fusion of vision and text [10, 11], as well as the
fusion of dynamic sensing [12]. However, these methods do
not address new modalities in open-set recognition, as han-
dled by ImageBind. In this manuscript, we enable efficient
multimodal embedding in a unified space with usable search
accuracy on mobile devices.

Multimodal mobile applications MEMs optimize align-
ment between high-quality representations acrossmodalities.
As such, multimodal information can be composed to enable
a rich variety of mobile context-aware applications. For ex-
ample, MEMs could embed visual, audio, text and sensor data
experienced on a mobile device into a personalized mem-
ory palace [13, 14]. Whenever users want to recall a specific
moment or items, they can query the memory palace with
a multimodal query, and the system will retrieve the most
relevant items. MEMs can also facilitate mobile agents to
iteract with users in a more human-like manner [15–17]. Re-
cently, Microsoft launches a project called Recall that makes
a note of everything ever displayed on personal computer
for AI-empowered retrospective search [18].
On-devicemultimodal embedding Data for embedding is
continuously sourced from end users and is often private and
sensitive. Evidence suggests that cloud service providers may
be curious about uploaded data to improve their services [19],
and database leaks and breaches pose significant threats [20].
Conducting embedding locally prevents the need to upload
daily viewed, sensed, or heard data to the cloud, offering
strong privacy protection. From the cloud perspective, a
single user views over 6,000 images per day, according to
our user study, requiring approximately 1065.6KJ of energy
and 0.8 GPU hours. For 1 billion daily active users, cloud
providers would need 1.1 TWh of energy and 0.8M GPU
hours daily, costing over $100 million per day. On-device
multimodal embedding shifts this cost to end users, making
the service more practical to deploy.
Early-exiting While early exiting has been a known tech-
nique in both traditional CNNs and recent language mod-
els [21–24], it is rarely integrated with MEMs for mobile de-
vices. BranchyNet [23] showed that features learned in early
layers are often sufficient for classification, with only a few
difficult samples requiring deeper layers. DynExits [25] in-
troduced learnable early-exit branch weights to avoid the pit-
falls of manually defined loss weights, while DVABatch [26]
dynamically adjusted batch sizes to allow independent query
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Supplementary Figure 1. Visualization for part of collected traces of viewed images of daily mobile applications. (a) Male, 23
years old; (b) Male, 25 years old; (c) Male, 55 years old; He quitted a while in the middle of the study. (d) Female, 24 years old.

exits, though with limited improvement. Layer Skip [27] and
DeeCap [21] utilized early exits for tasks like text decod-
ing and image captioning. Gromov et al. [24] demonstrated
that removing deeper layers often does not degrade perfor-
mance due to the similarity between adjacent deep layers. In
this work, we propose an early-exiting system for on-device
MEMs, providing a lightweight and efficient solution for
mobile devices.
Predictive early exit Predictive Exit [22] designed a low-
cost prediction engine for CNNs, using zero padding, filter
generation, and one-dimensional convolution to predict exit
points in computer vision tasks. Dong et al. [28] introduced
an exit predictor that uses depthwise separable convolu-
tions to generate scores for deciding whether to skip certain
exits, reverting to confidence-based decisions when neces-
sary. However, these methods are complex and not suited
for attention-based transformers, where matrix multiplica-
tion dominates. In summary, while effective for CNNs, these
approaches do not scale well to transformer-based models
due to their convolution-specific designs. Hamed et al. [11]
integrated early exits at the end of encoders to balance pre-
dictive performance and computational efficiency, but they
did not address exit timing or hardware compatibility. Our
system introduces a hardware-friendly, lightweight predictor
for efficient early exits in transformers, tailored for mobile
devices, ensuring both performance and accuracy.

User Study on Viewed Images
We collected statistics of viewed images of daily mobile ap-
plications from 8 volunteers, ranging from 20 to 52 years old.
Uiautomator was executed in the background to dump daily

android UI page (stored in XML file format) for final analysis.
A sample of XML file is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<hierarchy rotation="0">

<node>
...
<node

index="1"
text="Brita Kettle..."
resource-id="com.xingin.xhs:id/cy7"
class="android.widget.ImageView"
package="com.xingin.xhs"
content-desc="product photo"
checkable="false"
checked="false"
clickable="true"
enabled="true"
focusable="true"
focused="false"
scrollable="false"
long-clickable="false"
password="false"
selected="false"
bounds="[0,114][78,213]"

/>
...

</node>
</hierarchy>

The top 10 applications that generated the most viewed
images are shown to illustrate the user trace, as sampled in
Supplementary Figure 1. The ‘ImageView’ elements are de-
tected to monitor whether there is the new figures. Relevant
images and their description are saved in storage for future
retrieval. Each imageview xml element group is hashed to
only include newly appeared images.

Multimodal Retrieval Demo
Weutilize the original ImageBind-huge [8], downloaded from
the official website, to demonstrate its multimodal retrieval



“The sound of fireworks made our 200th 
day feel even more magical..”

“On July 13th in Santa Clara, we heard 
fireworks in the night suddenly..”

Firework

Audio Images Texts

Confidence: 0.99 Confidence: 0.95 

Confidence: 0.89 

Confidence: 0.91 

Supplementary Figure 2. Demo of cross-modal retrieval
using MEMs. Given an audio clip of fireworks, the model
retrieves the most semantically relevant images and text
descriptions from user data, with high confidence scores.

capability. By aligning multimodal embeddings into a uni-
fied space, ImageBind can effectively retrieve semantically
relevant content across different modalities using human-
friendly input formats. As shown in Supplementary Figure 2,
the sound of fireworks retrieves images of fireworks from
the albums, along with their corresponding textual notes,
with high confidence.

Memory Issue and Loading Latency
Storing the complete multimodal model weights for each
modality is memory-intensive. For example, the visual en-
coder alone occupies more than 1GB of memory for its
weights, not to mention the intermediate activations. This
can cause the application to be killed by the OS due to mem-
ory pressure [29].

One common solution is to load the model layer by layer
and sequentially remove the weights from the memory after
finishing relevant operations. It can save memory by up
to 10× for executing MEM inference. However, the loading
latency for each transformer block is huge. For example, it
takes around 0.43s to load one block on a commodity mobile
phone, which is more than 2× larger than the encoding time
of each block (around 0.19s for one image). This leads to a
significant increase in the encoding time.
Reminisce is designed to address these issues by predict-

ing the optimal number of layers to load and embedding for
each sample, reducing memory usage and optimizing the
encoding pipeline to hide the loading latency. We first test
memory footprint of naive MEM in a memory-unlimited
server environment. Compared to naive MEM, Reminisce
can reduce memory usage by up to 5.8×. However, due to the
extra memory overhead of batching parallelism, Reminisce
has a slightly higher peak memory footprint compared to
the naive layer-wise baseline. But it is still within a practical
range, e.g., 82M for embedding IMU information, which is be-
low the average Android application memory consumption
of 100M as reported in 2020 [30]. After 5 years, the mobile
RAM capacity has increased significantly, with up to 24GB
available on high-end devices [31]. Less than 300MB of peaky
memory usage is affordable for most modern mobile devices.
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Supplementary Figure 3.Comparison of memory footprint
across different modalities. Our system maintains a peaky
memory usage of less than 300MB throughout the embedding
process. Device: ORIN (INT8).
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Supplementary Figure 4. Rationale behind pre-exit pre-
dictor. (a) Each dataset has a different optimal exit point. (b)
Intermediate embeddings can serve as a cue for predicting
the appropriate exit for each sample.
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Supplementary Figure 5. P-LoRA step decision. (a) The
pivot point of the pre-exit predictor guides the selection of
the tuning step. (b) Relationship between progressive tuning
steps and exit locations.

Micro Experiments for Design Rationales
Effectiveness of pre-exit predictor As shown in Supple-
mentary Figure 4a, prediction accuracy improves with the
increase of superficial embedding layers. As indicated by
Supplementary Figure 4b, most samples require the com-
plexity of more than 7 layers. With 𝑁 = 7, the predicted
accuracy is 85%, the average predicted layer is 15.5, and the
average actual layer is 16.5. An interesting finding is that
as the intermediate embeddings are fed layer by layer, the
deeper the layers, the more accurately the predictor model
can determine the exit value. This improvement occurs be-
cause deeper layer embeddings are more discriminative and
better suited for predicting the final embedding.
P-LoRA step decision As shown in Supplementary 5, the
optimal healing step varies across exit layers. In general, the
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Supplementary Figure 6. Retrieval accuracy across em-
beddings generated by different MEM layer exits. (a) Single
modality; (b) Cross modality.

larger the 𝑛, the greater the per-step healing capacity, due
to the increased number of tunable parameters. However,
if step 4 is applied to all exits, exits 2 and 3 will miss op-
portunities for healing. This is acceptable for the top layers,
as they already have a strong feature representation from
earlier healing. Larger steps benefit later layers by improving
convergence performance. For smaller exits, earlier features
are still weak and require healing at each exit.
Unbalanced retrieval performance As shown in Sup-
plementary Figure 6b, query embeddings will prefer those
data embedding counterparts generated by similar granular-
ities, leading to an interesting observation: query with full-
capacity embeddings not always retrieval the best results. For
instance, for single-modality retrieval on the HARSMART
dataset, using the full-capacity MEM to retrieve filtered em-
beddings results in a top-1 accuracy of only 24.9%, 56.6%
lower than using a 2-layer query embedding, since over 99%
of samples exit before 3 layers during local embedding. The
same phenomenon occurs in the cross-modal TWITTER
dataset.

Design Details and Cost Analysis

Supplementary Algorithm 1:Our Pre-exit Predictor
input :Superficial Embedding Layer 𝑁 ;

Predict model 𝜙𝑆 ;
Burst-in Streaming Input, X.

output :Embedding, E.

Function Data-aware_Coarse-grained_Embedding(𝑁 , 𝜙𝑆 , X):
Embedding← Batched_Layerwise_Encoding(0, 𝑁 , X);
Predicted Exit 𝑒 ← 𝜙𝑆 (E) ;
Group X into X𝑒 with the same exit seperately;
forall X𝑒 do

Embedding← Batched_Layerwise_Encoding(𝑁 , 𝑒 , X𝑒 );

Store Embedding E in the disk.
Function Batched_Layerwise_Encoding(𝑖 , 𝑗 , X):
X𝐵 ← Batching X;
forall X𝐵 do

while 𝑖<𝑗 do
Encode X𝑖

𝑏
; load layer 𝑖+1 concurrently;

Embedding← 𝑃𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 (Intermediate results);
return Embedding.

Device Specification
Model
Preci-
sion

Jetson Orin [24] 1024-core NVIDIA Ampere GPU.
Default operating mode: MAXQ. INT8

Jetson TX2 [33] 256-core NVIDIA Pascal GPU. Default
operating mode: MAXN. INT8

Raspberry Pi
4B [34]

Broadcom BCM2711B0 quad-core A72
64-bit @ 1.5GHz CPU. INT8

Redmi Turbo
3 [35]

Qualcomm Snapdragon 8 Gen 3 CPU.
Default operating mode: Balance. INT4

Supplementary Table 1. Experimental devices used in ex-
periments.

ID Name CPU Online Max CPU Freq Max GPU Freq

0 MAXN 0–7 all 729.6MHz–9.22GHz 0–9.22GHz
1 MAXQ 0–3 729.6–1190MHz 0–612MHz
2 MAXP_FREQ 0–3 729.6–1420MHz 0–612MHz
3 MAXP_CORE 0–7 all 729.6–1497.6MHz 0–408MHz

Supplementary Table 2. Jetson orin power modes
overview.

Pre-exit predictor in detail We summarize the use of
the pre-exit predictor in Supplementary Algorithm 1. First,
we load Layer𝑖 and encode all input data as a batch, while
Layer𝑖+1 is loaded concurrently to minimize loading time.
This process iterates until all 𝑁 layers are loaded. Next, we
feed the intermediate embeddings (i.e., superficial embed-
dings) to the predictor model. Data are then batched accord-
ing to the predicted exit values. These steps are repeated for
each batch until all data reach their predicted exits.
Pre-exit predictor cost Training the predictor is efficient,
requiring only tens of iterations on hundreds of samples,
taking just a few minutes on a single GPU. The trained pre-
dictor is lightweight, with a memory footprint of around
1MB. The main concern is the cost of computing the superfi-
cial embedding. Fortunately, this embedding can be reused
for subsequent coarse-grained embeddings.
Progressive LoRA training details The healing P-LoRA
is designed to be parameter-efficient and highly transferable.
Application developers can customize the personalized heal-
ing adapter during the testing phase. During deployment,
healing occurs iteratively, and embedding granularity can
be updated in real time to better fit the data and synchronize
with their representations. In this work, for simplicity, the
embedding granularity predictor was trained on zero-shot
embeddings. The training objective is the fine-grained em-
bedding, not the query embedding. We leave the output layer
untuned to mitigate the dynamic embedding mismatch is-
sue. Even without the healing P-LoRA, we demonstrate that
Reminisce can still achieve usable retrieval performance.
Cache cost analysis We quantize the intermediate acti-
vations to INT4 and de-quantize them during reuse, which
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Supplementary Figure 7. System performance under different operating modes. Dataset: COCO. (a) Performance on Jetson
Orin (INT8); (b) Performance on Jetson TX2 (INT8).

ID Name CPU Online Max CPU Freq Max GPU Freq

0 MAXN 1–5 all 2.14 GHz 2.14GHz
1 MAXQ 3–5 on 1200MHz 0–850MHz
2 MAXP_CORE_ALL 1–5 all 1400MHz 0–1120MHz
3 MAXP_CORE_ARM 3–5 on 2000MHz 0–1120MHz

Supplementary Table 3. Jetson TX2 power modes
overview.

takes significantly less time than re-computation (around
10 ms per embedding). During pre-exiting prediction, the
activations remains in RAM. Once coarse-grained embed-
ding begins, these cached activations replace the intermedi-
ate variables typically stored in RAM during embedding, so
no additional peak memory footprint is required. After the
process ends, the activations are released sequentially. For
cache reuse in the fine-grained embedding procedure, the
activations of coarse-grained embeddings are quantized and
temporarily stored in storage, which is less constrained than
RAM, until the query occurs. This strategy is well-studied by
mobile memory management literature [30], and is suitable
for modern mobile devices with large storage. The loading
time is approximately 1 ms for 10 activations. Once an image
is queried, it is updated to the fine-grained embedding, and
its storage can be freed.

Implementation Details
Reminisce is built on ImageBind-LoRA [32], an open-source
multimodal embedding model fine-tuning framework. For
matching, we use matrix multiplication, as it is not the pri-
mary bottleneck in query cost. Further vector database opti-
mizations, such as FAISS [33], are orthogonal to Reminisce.
LoRA tuning and embedding accuracy evaluations are emu-
lated on a GPU server to enable faster iterations and energy
savings. Embedding inference latency, power consumption,
and memory usage are directly measured by running Rem-
inisce on a mobile device using the open-source on-device
multimodal inference engine mllm [34]. The devices used
in the evaluation are summarized in Supplementary Table 1.

Detailed hardware specifications of different modes for the
two Jetson boards are summarized in Supplementary Table 2
and Supplementary Table 3. We adopt optimum-quanto [35]
to quantize model weights to “qint8” on Jetson development
boards.

Additional Throughput Analysis
Supplementary Table 4 summarizes the embedding through-
put comparison, serving as a numerical supplementary of
end-to-end performance. Reminisce maintains high through-
put in a layer-wise setting, making it a more practical so-
lution for resource-constrained devices. For instance, on
the 8GEN3 mobile, Reminisce can process data up to 5.4×
faster than the naive MEM without loading layers sequen-
tially, while reducing memory footprint by up to 5.8×. Al-
though Reminisce primarily targets layer-wise scenarios, we
also evaluated throughput performance when loading all en-
coders simultaneously. Reminisce is still competitive in this
setting, achieving 2.6× throughput improvement on average
due to the enhanced early-exit mechanism.

Interestingly, we find that healing the exited larger MEMs
ismore effective than using a smaller-sized foundationmodel.
For example, using CLIP-b/16 with 85.6M parameters results
in embeddings that are 2.7× faster than ImageBind but sig-
nificantly reduces the ability to embed different modalities
concisely, leading to up to 39.8% accuracy loss. Though with
our system design, the accuracy loss is mitigated to 3.1%
with a 2.7× throughput improvement, its performance is still
inferior to the healed ImageBind. Fortunately, Reminisce en-
ables narrows the cost gap between the two models, while
achieving much higher retrieval performance.

Furthermore, as shown in Supplementary Figure 7, more
aggressive operating modes generally lead to higher system
throughput. For example, on ORIN, using MAXN mode pro-
vides a 1.4× throughput improvement compared to MAXQ
mode, albeit at a 6.3× increase in power consumption. There-
fore, selecting an appropriate operating mode based on the
specific device characteristics and requirements is crucial
for optimizing the performance-energy tradeoff. Fortunately,



Dataset
Throughput

(Contents / s)
Relative

Accuracy
ORIN
(INT8)

TX2
(INT8)

RPI4B
(INT8)

8GEN3
(INT4)

Relative
Accuracy

MEM 1.98 0.34 0.05 0.05
MEM (Batched) 17.45 1.36 0.07 0.10

BranchyNet 2.96 0.50 0.08 0.07
Fluid Batch 26.08 2.03 0.11 0.16

Ours 95% 62.31 3.31 0.15 0.31 95%

MFM (w/o layerwise) 100% 36.49 1.70 0.07 0.16 100%
BranchyNet (w/o layerwise) 71% 54.53 2.54 0.11 0.25 93%

Ours (w/o layerwise) 95% 72.16 3.36 0.15 0.33 95%

COCO FLICKR

100%

71%

100%

93%

ORIN
(INT8)

TX2
(INT8)

RPI4B
(INT8)

8GEN3
(INT4)

Relative
Accuracy

ORIN
(INT8)

TX2
(INT8)

RPI4B
(INT8)

8GEN3
(INT4)

Relative
Accuracy

1.98 0.34 0.05 0.05 5.34 3.15 0.30 0.27
17.45 1.36 0.07 0.10 58.41 5.28 0.38 0.32
2.27 0.38 0.06 0.06 31.12 7.96 0.76 0.69
20.01 1.55 0.08 0.12 100.71 13.34 0.96 0.80
44.33 2.32 0.10 0.22 98% 240.91 25.64 0.99 0.84 95%

36.49 1.70 0.07 0.16 100% 125.52 5.85 0.40 0.34 100%
41.83 1.95 0.09 0.19 81% 317.11 14.77 1.00 0.85 57%
50.44 2.35 0.10 0.23 98% 317.11 14.77 1.00 0.85 95%

FLICKR CLOTHO HARSMART

100%

57%

100%

81%

ORIN
(INT8)

TX2
(INT8)

RPI4B
(INT8)

8GEN3
(INT4)

34.15 4.30 1.03 0.81
121.41 7.86 1.28 0.96
108.98 13.72 3.29 2.58
387.49 25.07 4.08 3.05
787.46 69.51 6.88 5.15

191.24 8.91 1.33 1.02
610.33 28.43 4.23 3.25
1024.49 47.72 7.10 5.45

HARSMART

Supplementary Table 4. Throughput vs. relative retrieval accuracy.

Reminisce consistently demonstrates superior efficiency across
different execution modes, enabling a more flexible trade-off
between throughput and energy consumption.
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