
Peer Review File

Ubiquitous Memory Augmentation via Mobile Multimodal
Embedding System
Corresponding Author: Mr Dongqi Cai

This file contains all reviewer reports in order by version, followed by all author rebuttals in order by version. 

Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The paper proposes the Reminisce framework, an efficient on-device multimodal embedding system. It is a coarse-grained
embedding approach based on existing techniques. The model first generates coarse-grained embeddings used to filter out
candidates during retrieval queries. The most promising candidates are further refined at query time to achieve accurate
retrieval. This strategy aims to significantly reduce the hardware requirements of the model, enabling deployment on mobile
devices. 
Main Comments: 
The introduction extensively explains the effects of the proposed approach, but it does not mention the techniques used.
How do the authors reduce the computational cost of the search and embedding procedure? A brief technical introduction to
the employed techniques is necessary. 
The authors state: “Since ORIN’s GPU does not support INT4 computation, we load the raw model with FP32 precision.” I
understand that Jetson devices do not support INT4, but ORIN supports INT8, and the Nano can efficiently handle FP16
quantization levels. Using FP32 seems highly suboptimal. A similar observation applies to the Raspberry Pi. Additionally,
Jetson devices offer various operating modes, ranging from energy-efficient setups to maximum performance configurations.
What was the specific setting used? The same concern applies to many other experiments. Given that deployment results
play a major role in the proposed paper, the lack of a rigorous analysis is a significant issue. 
The proposed methodology appears to be a combination of existing techniques. The proposed pipeline heuristically
balances the computational cost and performance of the method. However, similar results could be achieved in various
ways. I do not see a clear advantage over other possible methodologies. The authors should more clearly explain the
novelty of their approach compared to existing methods. 
Punctual Observations 
• In Figure 5, the authors present results for the Jetson TX2, while in Figure 2 it is not included. Why? 
• Table 2 is extremely terse. A different way to visualize these data could help readers better understand the benefits of the
proposed approach. Additionally, the observed out-of-memory issue could likely be avoided by using FP16 or INT8
quantization. 
• The section “Significance of Key Designs” is introduced before sufficiently explaining the key designs. 
• Figure 7 presents the inference time without specifying the target devices or the quantization method used. The search
time for most thresholds is still far from real-time, reaching up to 10 seconds. 
• The same concern applies to Figure 8. What device was used? What was the measurement setup? 
• In the subsection “Case Study: Twitter Meme Retrieval,” the analysis is too shallow. 
Minor Issues: 
• Unclear sentence: "The generated embeddings can be easily retrieved to help mobile users remember and recall
information when needed." The meaning should be clarified. 
• Typo: "Based on the trace statistics in §, typical" – The reference format needs correction. 
• Typo: "This method outperforms fixed early-exit baselines, as will be shown in §." – The section reference should be
properly formatted. 

(Remarks on code availability) 



Reviewer #2 

(Remarks to the Author) 
General Comments: 

The manuscript presents a valid contribution to the field of multimodal embedding, specifically focusing on efficient on-
device computation for resource-constrained devices, including mobile. The proposed system, Reminisce, introduces a
novel approach that enhances retrieval efficiency while maintaining computational feasibility. The emphasis on hardware-
friendly design is particularly valuable, ensuring practical deployment of such models on edge devices and closer results to
real-world scenarios. Additionally, the study demonstrates transparency regarding resource consumption, including memory
and disk usage. 

What are the noteworthy results? 

The work achieves significant gains in energy efficiency and throughput, making it well-suited for real-world deployment on
resource-constrained edge devices. The evaluation on physical (real) hardware further strengthens its practical relevance
and reliability. 

Will the work be of significance to the field and related fields? How does it compare to the established literature? If the work
is not original, please provide relevant references. 

Yes, this work is significant to the field. 

It enhances multimodal embedding with a strong focus on hardware efficiency for edge (and mobile) devices. By optimising
retrieval in constrained environments, it extends real-world applicability beyond prior research. 

Does the work support the conclusions and claims, or is additional evidence needed? 

Yes. However, a clearer explanation of the caching invalidation strategy is necessary, as multiple caching mechanisms are
involved (as pointed out in Figure 11). 

Are there any flaws in the data analysis, interpretation, and conclusions? Do these prohibit publication or require revision? 

No. 

Is the methodology sound? Does the work meet the expected standards in your field? 

The methodology is appropriate and meets field standards. 

The approach to on-device computation is particularly strong, as it reduces energy consumption while maintaining retrieval
performance, and the motivation (privacy concern when using Cloud solutions) is solid. 

Is there enough detail provided in the methods for the work to be reproduced? 

Most aspects are well-described, but the caching invalidation mechanism should be clarified for readers. 

Final Recommendation: 

The study is well-executed and makes a valuable contribution to the field. Addressing minor issues related to caching,
terminology, and figure corrections will further enhance the clarity of the manuscript. 

Figure corrections are: Figure 6 ("Ous" - > "Ours"). Figure 3b requires clarification in the legend regarding the meaning of the
black and white bars colours. 

Minor terminology inconsistencies: the misuse of "backend/frontend" where "background/foreground" would be more
appropriate. Similarly, "backward" is incorrectly used instead of "background" in the appendix. 

Additionally, some redundant sentences in the appendix, such as "This causes the application to be easily killed by the OS
due to memory pressure," should be removed to improve readability. 

With these refinements, I strongly support its publication. 

(Remarks on code availability) 
My assessment of the code is that it is a usable resource for the community, with clear details on the installation, and use of
the available scripts. It also cares for important (Open-Source)OS details, such as the clear deinition of its OS license. 

Version 1: 



Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The authors successfully replied to all my questions and concerns. I have no further requests. 

(Remarks on code availability) 
The authors successfully replied to all my questions and concerns. I have no further requests. 

Reviewer #2 

(Remarks to the Author) 
The revised manuscript presents a meaningful and well-executed contribution to the field of multimodal embedding, with a
particular emphasis on efficient on-device computation for resource-constrained platforms, including mobile devices. 

The authors have addressed the previously raised concerns regarding caching mechanisms, terminology, and figure clarity.
The cache invalidation strategy has been clarified, and the necessary corrections to figures and textual inconsistencies have
been made. These refinements have significantly improved the clarity and precision of the manuscript. 

With these improvements in place, I strongly support the publication of this work. The study is both technically sound and
practically relevant, offering valuable insights for deploying efficient multimodal retrieval systems on non-simulated edge
devices. 

(Remarks on code availability) 
I maintain my previous assessment of the code: which is that it is a usable resource for the community, with clear details on
the installation and use of the available scripts. It also cares for important (Open-Source)OS details, such as the clear
definition of its OS license. 

Open Access This Peer Review File is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.
In cases where reviewers are anonymous, credit should be given to 'Anonymous Referee' and the source.
The images or other third party material in this Peer Review File are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/



GENERAL RESPONSES
We thank the reviewers for their insightful comments and helpful suggestions. The original comments
are attached at the end of this document. We have carefully revised our manuscript according
to these comments and responded to each point individually. The modifications made to the
manuscript are highlighted in blue text or enclosed within blue boxes after each response for clarity.
Additionally, due to space constraints in the main text, several supplementary experiments and
extended discussions have been included in the supplementary materials. We hope that our revisions
and responses adequately address all concerns.
A summary of major revisions are provided below:
{ Further Design and Result Clarification

- Core Techniques: We expanded the introduction with a concise overview of our core techniques
to clarify how embedding costs are reduced (Reviewer #1–Comment 1: Addressed in lines
83–109).

- Experimental Settings: We clarified the quantization and deployment settings, specifying
default experimental conditions and detailing performance modes (Reviewer #1–Comment 2:
Addressed in Figure 4, Table 2, lines 307–322, Supplementary Table 3, etc.).

- System Advantages: We revised the results and methods sections to emphasize our system’s
advantages compared to prior literature (Reviewer #1–Comment 3: Addressed in Figure 3,
§2.3 (lines 197–249), lines 567–589, etc.).

- Invalidation Strategy: We added a description and illustrative workflow of our cache invalida-
tion strategy to the methods section (Reviewer #2–Comment 4: Addressed in Figure 9, lines
776–787).

{ Enhanced Evaluation
- Integration with Quantization: All evaluation experiments have been updated under the

appropriate quantization settings, demonstrating that our method, being orthogonal to and
highly compatible with the quantization scheme, consistently achieves superior performance
compared to previous methods.(Reviewer #1–Comment 2: Addressed in §2.5).

- Optimized Query Efficiency: Query efficiency was improved by loading INT8 models entirely
into RAM. This accelerated the fine-grained query phase and reduced query latency to under
1.5s, only 300ms higher than naive retrieval system, while achieving up to 31× higher embedding
throughput. (Reviewer #1–Comment 7: Addressed in §2.5.3).

- Further Use Case Study Analysis: The use case study has been expanded to include
comparisons with additional baselines, accompanied by a more in-depth discussion (Reviewer
#1–Comment 9: Addressed in §2.5.5).

{ Compliance with Editorial Requests
- Formats: We reformatted the manuscript to adhere to Nature Communications formatting

instructions, including author contributions, competing interests, and supplementary information
etc.

- Data Availability: Descriptions of all four previously published datasets and our self-collected
dataset have been provided. Anonymization and consent information for real user data have
also been included.

- Author Information: Author information has been updated. Two new authors have been
added to assist with revisions, and detailed explanations along with consent letters have been
provided. All corresponding authors now have ORCID IDs.

- Others: The checklist has been updated accordingly. Typos have been corrected. The
manuscript has been proofread and polished.



RESPONSES TO REVIEWER #1
{ Comment 1: The introduction extensively explains the effects of the proposed approach, but it

does not mention the techniques used. How do the authors reduce the computational cost of the
search and embedding procedure? A brief technical introduction to the employed techniques is
necessary.

{ Response 1: We thank the reviewer for pointing out the need to clarify the technical contributions
of our approach. In response, we have revised the introduction section (lines 83–109) to include
a concise and focused summary of the key techniques employed to reduce the computational cost
of the search and embedding procedures. We hope this addition addresses the reviewer’s concern
and improves the clarity of our methodological contribution.

Revised manuscript line 83–109
Reminisce is the first-of-its-kind efficient on-device multimodal embedding system. Its key idea
is coarse-grained embedding, built upon the early-exiting technique. It draws inspiration from
the top-down predictions of cognitive brain [17]. Embeddings from early-exited MEMs serve as
coarse-grained representations to filter likely candidates during retrieval. These candidates are then
refined by the remaining layers at query time for final selection. While early exiting avoids full model
execution during memorization, three key system challenges remain on mobile devices (§4.1): low
parallelism, limited exiting benefits, and performance degradation. To further promote the practical
deployment of Reminisce, we propose three novel software-hardware co-designs: (1) Data-aware
pre-exit predictor (§4.2) is a unified, lightweight early-exit predictor model applicable across all
modalities. It facilitates efficient batching and pipeline execution, significantly improving encoding
throughput; (2) Progressive LoRA healing (§4.3) retrofits low-rank adaptation (LoRA) [17], a
popular parameter-efficient fine-tuning method, to ensure high retrieval performance with earlier
exits by progressively increasing shared bottom layers. This enables intermediate results to be
cached and reused; (3) Speculative fine-grained retrieval (§4.4). Query embeddings from different
exits are used for speculative filtering, with top candidates from each granularity undergoing a
second matching round for accurate final retrieval.

{ Comment 2: The authors state: “Since ORIN’s GPU does not support INT4 computation, we
load the raw model with FP32 precision.” I understand that Jetson devices do not support INT4,
but ORIN supports INT8, and the Nano can efficiently handle FP16 quantization levels. Using
FP32 seems highly suboptimal. A similar observation applies to the Raspberry Pi.
Additionally, Jetson devices offer various operating modes, ranging from energy-efficient setups to
maximum performance configurations. What was the specific setting used? The same concern
applies to many other experiments. Given that deployment results play a major role in the
proposed paper, the lack of a rigorous analysis is a significant issue.

{ Response 2: We thank the reviewer for the insightful comment regarding the use of lower-precision
quantization and the operating modes of the Jetson devices. We have changed the quantization
settings and clarified hardware configurations in the revised manuscript to address these concerns
(Table 2, line 307–322). Please refer to the following Responses 2a (to lower-precision quantization)
and 2b (to operating modes) for more details.



Dongqi Cai, Shangguang Wang, Chen Peng, Zhenyan Lu, Zeling Zhang, Tao Qi, Nicholas D. Lane, Mengwei Xu

Device Specification Model
Precision

Jetson Orin [23] 1024-core NVIDIA Ampere GPU. Default
operation mode: MAXQ. INT8

Jetson TX2 [36] 256-core NVIDIA Pascal GPU. Default
operation mode: MAXN. INT8

Raspberry Pi
4B [37]

Broadcom BCM2711B0 quad-core A72
64-bit @ 1.5GHz CPU. INT8

Redmi Turbo
3 [38]

Qualcomm Snapdragon 8 Gen 3 CPU.
Default operation mode: Balance. INT4

Table 2. Experimental devices used in experiments.

the first two Jetson boards, Reminisce runs on the GPU. For329

the RPI4B and the 8GEN3 smartphone, Reminisce runs on330

the CPU due to the lack of CUDA support3.331

2.5 Evaluation332

We evaluate Reminisce to address the following key ques-333

tions: (1) How much improvement does Reminisce achieve334

in terms of embedding throughput and relative retrieval accu-335

racy under different memory budgets across various devices?336

(2) How much performance improvement does each com-337

ponent contribute? (3) What is Reminisce’s performance338

under different query latency budgets? (4) What is the sys-339

tem cost of Reminisce? (5) How does Reminisce perform340

on commodity mobile phones in daily usage scenarios?341

2.5.1 End-to-end Performance.342

First, we present the end-to-end embedding throughput per-343

formance under the layer-wise inference setting, a more344

user-friendly approach for always-on daily applications due345

to its low memory footprint.346

Reminisce achieves an order of magnitude improve-347

ment in throughput. Figure 4 shows that Reminisce can348

achieve a 12.4× average throughput improvement compared349

to MEM. This gain is primarily driven by the early-exit mecha-350

nism, which allows the model to exit early when the embed-351

ding is sufficiently accurate, avoiding unnecessary compu-352

tations. Additionally, after parameter-efficient healing, the353

coarse-grained embeddings can convey similar semantics354

to fine-grained embeddings. For instance, in the text-audio355

retrieval task CLOTO on Jetson orin, Reminisce delivers an356

45× throughput improvement with less than 3% relative ac-357

curacy loss under the default query latency budget as 1.5s358

(will be further analyzed in §2.5.3).359

Regarding stronger baselines, Fluid Batch introduces a360

early-exit-aware batching mechanism, achieving a 3× through-361

put improvement over the naive early-exit baseline BranchyNet362

and 6× over MEM under the layer-wise inference setting. How-363

ever, Reminisce still outperforms Fluid Batch across all364

3Current mobile inference engines cannot effectively utilize GPUs for MEM
execution [9, 19, 39].

datasets, providing up to 2.4× speedup in throughput. The365

advantages of Reminisce arise not only from the early-exit366

mechanism but also from the pre-exit strategy, which pre-367

dictively adjusts the embedding granularity based on the368

sample’s characteristics.369

2.5.2 Significance of Key Designs.370

Effect of Exit Healing As illustrated in Figure 5a, while371

the zero-shot embedding of ImageBind has the generaliza-372

tion ability across different datasets, the exit healing mech-373

anism is crucial for enhancing Reminisce’s performance.374

As shown by the green dotted lines, retrieval accuracy sig-375

nificantly improves after healing the exited branches. For376

instance, compared to zero-shot MEM, exit healing boosts re-377

trieval accuracy by 37.8% and 13.2% on average for the COCO378

and FLICKR datasets, respectively.379

Effect of Data-aware Pre-exit After healing, Reminisce380

leverages the pre-exit mechanism to dynamically adjust em-381

bedding granularity based on each sample’s characteristics.382

It can predictively exit at the optimal layer to balance the383

trade-off between accuracy and throughput. As shown in384

Figure 5a, compared to exiting all samples at a fixed layer,385

the data-aware pre-exit mechanism improves retrieval ac-386

curacy by up to 19.8%. The higher coarse-grained retrieval387

performance is crucial for achieving optimal fine-grained388

retrieval.389

Effect of Speculative Fine-grained Query With a default390

query candidate pool size of 10, retrieval accuracy using391

filtered fine-grained embeddings is, on average, 35.5% higher392

than the previous coarse-grained retrieval accuracy. This393

improvement is due to the fact that over 95% of the targets394

retrievable by full-sized MEMs are successfully retrieved395

from the toplist of coarse-grained embeddings. As a result,396

the embedding accuracy of Reminisce is comparable to that397

of the full-sized MEM.398

2.5.3 Impact of Query Latency Budget.399

Although query cost is negligible compared to embedding400

cost in the long run—-since queries occur less frequently than401

continuous daily embeddings—-it is immediately noticeable402

6

Revised manuscript line 307–322
Hardware and Quantization As summarized in Table 2, we evaluate Reminisce on the NVIDIA
ORIN (ORIN) [24], Jetson TX2 (TX2) [37], Raspberry Pi 4B (RPI4B) [38], and a flagship
smartphone with Qualcomm Snapdragon 8Gen3 (8GEN3) [39]. The default operating mode for
ORIN is MAXQ, which is the most cost-effective mode with four large cores disabled. For the Jetson
TX2, we select the MAXN mode, the most powerful mode available, to fully utilize GPU computing
power. To reduce memory consumption, we quantize the model to INT4 precision for the 8GEN3
smartphone and INT8 precision for ORIN, TX2, and RPI4B. Please refer to Supplementary §G for
more implementation details about executing mode specifications and quantization. Reminisce
runs on the GPU for the ORIN and TX2 boards. For the RPI4B and the 8GEN3 smartphone,
Reminisce runs on the CPU due to the lack of CUDA support.

{ Response 2a: In the revised manuscript, we have quantized the model to INT8 across all
three development boards. Our approach remains clear performance improvements over the
corresponding baselines under INT8 precision, demonstrating that our method, being orthogonal
to and highly compatible with the quantization scheme (Supplementary Table 2). Due to space
constraints, this table has been moved to the Supplementary, with its illustrative content Figure
4 retained in the main text. All experimental results have been revised accordingly under the new
quantization setting (Figure 4–8, 12, 14). The figures captions are updated accordingly to state
the experiment setting clearly. Please refer to §2.5 of the revised manuscript for detailed analysis.

Dataset
Throughput

(Contents / s)
Relative

Accuracy
ORIN
(INT8)

TX2
(INT8)

RPI4B
(INT8)

8GEN3
(INT4)

Relative
Accuracy

MEM 1.98 0.34 0.05 0.05
MEM (Batched) 17.45 1.36 0.07 0.10

BranchyNet 2.96 0.50 0.08 0.07
Fluid Batch 26.08 2.03 0.11 0.16

Ours 95% 62.31 3.31 0.15 0.31 95%

MFM (w/o layerwise) 100% 36.49 1.70 0.07 0.16 100%
BranchyNet (w/o layerwise) 71% 54.53 2.54 0.11 0.25 93%

Ours (w/o layerwise) 95% 72.16 3.36 0.15 0.33 95%

COCO FLICKR

100%

71%

100%

93%

ORIN
(INT8)

TX2
(INT8)

RPI4B
(INT8)

8GEN3
(INT4)

Relative
Accuracy

ORIN
(INT8)

TX2
(INT8)

RPI4B
(INT8)

8GEN3
(INT4)

Relative
Accuracy

1.98 0.34 0.05 0.05 5.34 3.15 0.30 0.27
17.45 1.36 0.07 0.10 58.41 5.28 0.38 0.32
2.27 0.38 0.06 0.06 31.12 7.96 0.76 0.69
20.01 1.55 0.08 0.12 100.71 13.34 0.96 0.80
44.33 2.32 0.10 0.22 98% 240.91 25.64 0.99 0.84 95%

36.49 1.70 0.07 0.16 100% 125.52 5.85 0.40 0.34 100%
41.83 1.95 0.09 0.19 81% 317.11 14.77 1.00 0.85 57%
50.44 2.35 0.10 0.23 98% 317.11 14.77 1.00 0.85 95%

FLICKR CLOTHO HARSMART

100%

57%

100%

81%

ORIN
(INT8)

TX2
(INT8)

RPI4B
(INT8)

8GEN3
(INT4)

34.15 4.30 1.03 0.81
121.41 7.86 1.28 0.96
108.98 13.72 3.29 2.58
387.49 25.07 4.08 3.05
787.46 69.51 6.88 5.15

191.24 8.91 1.33 1.02
610.33 28.43 4.23 3.25
1024.49 47.72 7.10 5.45

HARSMART

Supplementary Table 3: Throughput vs. relative retrieval accuracy.



� �� 	� 
�
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� � �� �� 	�
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� �� 	� 
� ��
�� ����$����� �"���"!��%�

����

����

����

����

����

����

��
��

!�#
��

��
�

� � �� �� 	�
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�MEM

[CVPR’23]

MEM
[CVPR’23] MEM

[CVPR’23]
MEM

[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

� 	 �  � ��
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� 	 
 � �  �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 �  �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� � �� ��
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

��� ��� 	�� 	��
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

��� ��	 ��� �� ��� 	��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

��� ��� 	�� 	�� 
��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 
 � � 
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

� 	 
 � � 
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� 	 
 �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

��� ��� 	�� 	�� 
��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 
 � � 
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)MEM

[CVPR’23] MEM
[CVPR’23]

MEM
[CVPR’23]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

a

b

c

d

� �� 	� 
�
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� � �� �� 	�
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� �� 	� 
� ��
�� ����$����� �"���"!��%�

����

����

����

����

����

����

��
��

!�#
��

��
�

� � �� �� 	�
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�MEM

[CVPR’23]

MEM
[CVPR’23] MEM

[CVPR’23]
MEM

[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

� 	 �  � ��
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� 	 
 � �  �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 �  �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� � �� ��
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

��� ��� 	�� 	��
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

��� ��	 ��� �� ��� 	��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

��� ��� 	�� 	�� 
��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 
 � � 
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

� 	 
 � � 
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� 	 
 �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

��� ��� 	�� 	�� 
��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 
 � � 
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)MEM

[CVPR’23] MEM
[CVPR’23]

MEM
[CVPR’23]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

a

b

c

d

� �� 	� 
�
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� � �� �� 	�
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� �� 	� 
� ��
�� ����$����� �"���"!��%�

����

����

����

����

����

����

��
��

!�#
��

��
�

� � �� �� 	�
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�MEM

[CVPR’23]

MEM
[CVPR’23] MEM

[CVPR’23]
MEM

[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

� 	 �  � ��
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� 	 
 � �  �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 �  �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� � �� ��
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

��� ��� 	�� 	��
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

��� ��	 ��� �� ��� 	��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

��� ��� 	�� 	�� 
��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 
 � � 
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

� 	 
 � � 
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� 	 
 �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

��� ��� 	�� 	�� 
��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 
 � � 
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)MEM

[CVPR’23] MEM
[CVPR’23]

MEM
[CVPR’23]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

a

b

c

d

� �� 	� 
�
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� � �� �� 	�
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� �� 	� 
� ��
�� ����$����� �"���"!��%�

����

����

����

����

����

����

��
��

!�#
��

��
�

� � �� �� 	�
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�MEM

[CVPR’23]

MEM
[CVPR’23] MEM

[CVPR’23]
MEM

[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

� 	 �  � ��
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� 	 
 � �  �
�� ����$����� �"���"!��%�

����

����

����

����

����
��

��
!�#

��
��

�

� 	 �  �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� � �� ��
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

��� ��� 	�� 	��
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

��� ��	 ��� �� ��� 	��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

��� ��� 	�� 	�� 
��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 
 � � 
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

� 	 
 � � 
�� ����$����� �"���"!��%�

���

���

���

���

��
��

!�#
��

��
�

� 	 
 �
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

��� ��� 	�� 	�� 
��
�� ����$����� �"���"!��%�

����

����

����

����

����

��
��

!�#
��

��
�

� 	 
 � � 
�� ����$����� �"���"!��%�

���

��

���

���

���

���

��
��

!�#
��

��
�

Text-Vision

COCO

Text-Vision

FLICKR

Text-Audio

CLOTHO

IMU

HARSMART

MEM
[CVPR’23]

MEM
(batched)

MEM
(batched)

MEM
(batched)

MEM
(batched)MEM

[CVPR’23] MEM
[CVPR’23]

MEM
[CVPR’23]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

BranchyNet
[ICPR’16]

Fluid
Batching

[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]
Fluid

Batching
[Samsung AI’22]

Fluid
Batching

[Samsung AI’22]

Ours Ours
Ours Ours

a

b

c

d

Figure 4: Illustration of throughput versus accuracy for different methods on different devices. (a)
Jetson Orin (INT8). (b) Jetson TX2 (INT8). (c) Raspberry Pi 4B (INT8). (d) 8Gen3 Smartphone
(INT4). For fairness, only layerwise baselines are included.

{ Response 2b: As for executing mode, we specify the mode as MAXQ for Jetson ORIN to save
energy. For Jetson TX2, we specify the mode as MAXN to maximum the throughput. All of those
choices have been clarified in the revised manuscript (line 311–315). The hardware specifications
of different executing modes are listed in Supplementary Table 1/2 for a detailed description.
Besides, we include additional results in terms of how different modes affect end-to-end inference
latency (Supplementary Figure 7, supplementary line 1137–1147).

Revised manuscript line 311–315
The default operation mode of ORIN is MAXQ, which is the most cost-effective mode, with 4 big
cores off. While for Jetson TX2, we select the MAXN mode, the most powerful mode by default,
to fully utilize the GPU’s computing power.



Supplementary Table 1. Jetson Orin Power Modes Overview. Supplementary Table 2. Jetson TX2 Power Modes Overview.

Ubiquitous Memory Augmentation via Mobile Multimodal Embedding System

Early-Exiting While early exiting has been a known tech-1100

nique in both traditional CNNs and recent language mod-1101

els [26, 50, 52, 68], it is rarely integrated with MEMs for mo-1102

bile devices. BranchyNet [26] showed that features learned1103

in early layers are often su!cient for classi"cation, with1104

only a few di!cult samples requiring deeper layers. DynEx-1105

its [51] introduced learnable early-exit branch weights to1106

avoid the pitfalls of manually de"ned loss weights, while1107

DVABatch [69] dynamically adjusted batch sizes to allow1108

independent query exits, though with limited improvement.1109

Layer Skip [49] and DeeCap [68] utilized early exits for tasks1110

like text decoding and image captioning. Gromov et al. [52]1111

demonstrated that removing deeper layers often does not1112

degrade performance due to the similarity between adjacent1113

deep layers. In this work, we propose the "rst early-exiting1114

system for on-device MEMs, providing a lightweight and1115

e!cient solution for mobile devices.1116

Predictive Early Exit Predictive Exit [50] designed a low-1117

cost prediction engine for CNNs, using zero padding, "lter1118

generation, and one-dimensional convolution to predict exit1119

points in computer vision tasks. Dong et al. [70] introduced1120

an exit predictor that uses depthwise separable convolu-1121

tions to generate scores for deciding whether to skip certain1122

exits, reverting to con"dence-based decisions when neces-1123

sary. However, these methods are complex and not suited1124

for attention-based transformers, where matrix multiplica-1125

tion dominates. In summary, while e#ective for CNNs, these1126

approaches do not scale well to transformer-based models1127

due to their convolution-speci"c designs. Hamed et al. [60]1128

integrated early exits at the end of encoders to balance pre-1129

dictive performance and computational e!ciency, but they1130

did not address exit timing or hardware compatibility. Our1131

system introduces a hardware-friendly, lightweight predictor1132

for e!cient early exits in transformers, tailored for mobile1133

devices, ensuring both performance and accuracy.1134

Table 3. Jetson Orin Power Modes Overview

ID Name CPU Online Max CPU Freq Max GPU Freq

0 MAXN 0–7 all 729.6 MHz–9.22 GHz 0–9.22 GHz
1 MAXQ 0–3 729.6–1190 MHz 0–612 MHz
2 MAXP_FREQ 0–3 729.6–1420 MHz 0–612 MHz
3 MAXP_CORE 0–7 all 729.6–1497.6 MHz 0–408 MHz

Table 4. Jetson TX2 Power Modes Overview

ID Name CPU Online Max CPU Freq Max GPU Freq

0 MAXN 1–5 all 2.14 GHz 2.14 GHz
1 MAXQ 3–5 on 1200 MHz 0–850 MHz
2 MAXP_CORE_ALL 1–5 all 1400 MHz 0–1120 MHz
3 MAXP_CORE_ARM 3–5 on 2000 MHz 0–1120 MHz

Figure 14. Case study: Daily personal application retrieval.

Figure 15. Demo of cross-modal retrieval using MEMs.

D Implementation Details1135

Reminisce is built on ImageBind-LoRA [71], an open-source1136

multimodal embedding model "ne-tuning framework. For1137

matching, we use matrix multiplication, as it is not the pri-1138

mary bottleneck in query cost. Further vector database opti-1139

mizations, such as FAISS [72], are orthogonal to Reminisce.1140

LoRA tuning and embedding accuracy evaluations are em-1141

ulated on a GPU server to enable faster iterations and en-1142

ergy savings. Embedding inference latency, power consump-1143

tion, and memory usage are directly measured by running1144

Reminisce on a mobile device using the open-source on-1145

device multimodal inference engine mllm [19]. Since mllm [19]1146

currently does not support the IMU modality and lacks GPU1147

optimizations, we also use PyTorch on a development board1148

for broader dataset comparisons.1149

E More Detailed Throughput Analysis1150

Table 5 summarizes the embedding throughput comparison,1151

serving as a numerical appendix of illustrative Figure 4.1152

F Multimodal Retrieval Demo1153

G Micro experiments for design rationales1154

H Pre-exit Predictor in detail1155

We summarize the use of the pre-exit predictor in Algo-1156

rithm 1. First, we load Layer𝐿 and encode all input data as1157

a batch, while Layer𝐿+1 is loaded concurrently to minimize1158

loading time. This process iterates until all 𝐿 layers are1159

19

Ubiquitous Memory Augmentation via Mobile Multimodal Embedding System

Early-Exiting While early exiting has been a known tech-1100

nique in both traditional CNNs and recent language mod-1101

els [26, 50, 52, 68], it is rarely integrated with MEMs for mo-1102

bile devices. BranchyNet [26] showed that features learned1103

in early layers are often su!cient for classi"cation, with1104

only a few di!cult samples requiring deeper layers. DynEx-1105

its [51] introduced learnable early-exit branch weights to1106

avoid the pitfalls of manually de"ned loss weights, while1107

DVABatch [69] dynamically adjusted batch sizes to allow1108

independent query exits, though with limited improvement.1109

Layer Skip [49] and DeeCap [68] utilized early exits for tasks1110

like text decoding and image captioning. Gromov et al. [52]1111

demonstrated that removing deeper layers often does not1112

degrade performance due to the similarity between adjacent1113

deep layers. In this work, we propose the "rst early-exiting1114

system for on-device MEMs, providing a lightweight and1115

e!cient solution for mobile devices.1116

Predictive Early Exit Predictive Exit [50] designed a low-1117

cost prediction engine for CNNs, using zero padding, "lter1118

generation, and one-dimensional convolution to predict exit1119

points in computer vision tasks. Dong et al. [70] introduced1120

an exit predictor that uses depthwise separable convolu-1121

tions to generate scores for deciding whether to skip certain1122

exits, reverting to con"dence-based decisions when neces-1123

sary. However, these methods are complex and not suited1124

for attention-based transformers, where matrix multiplica-1125

tion dominates. In summary, while e#ective for CNNs, these1126

approaches do not scale well to transformer-based models1127

due to their convolution-speci"c designs. Hamed et al. [60]1128

integrated early exits at the end of encoders to balance pre-1129

dictive performance and computational e!ciency, but they1130

did not address exit timing or hardware compatibility. Our1131

system introduces a hardware-friendly, lightweight predictor1132

for e!cient early exits in transformers, tailored for mobile1133

devices, ensuring both performance and accuracy.1134

Table 3. Jetson Orin Power Modes Overview

ID Name CPU Online Max CPU Freq Max GPU Freq

0 MAXN 0–7 all 729.6 MHz–9.22 GHz 0–9.22 GHz
1 MAXQ 0–3 729.6–1190 MHz 0–612 MHz
2 MAXP_FREQ 0–3 729.6–1420 MHz 0–612 MHz
3 MAXP_CORE 0–7 all 729.6–1497.6 MHz 0–408 MHz

Table 4. Jetson TX2 Power Modes Overview

ID Name CPU Online Max CPU Freq Max GPU Freq

0 MAXN 1–5 all 2.14 GHz 2.14 GHz
1 MAXQ 3–5 on 1200 MHz 0–850 MHz
2 MAXP_CORE_ALL 1–5 all 1400 MHz 0–1120 MHz
3 MAXP_CORE_ARM 3–5 on 2000 MHz 0–1120 MHz

Figure 14. Case study: Daily personal application retrieval.

Figure 15. Demo of cross-modal retrieval using MEMs.

D Implementation Details1135

Reminisce is built on ImageBind-LoRA [71], an open-source1136

multimodal embedding model "ne-tuning framework. For1137

matching, we use matrix multiplication, as it is not the pri-1138

mary bottleneck in query cost. Further vector database opti-1139

mizations, such as FAISS [72], are orthogonal to Reminisce.1140

LoRA tuning and embedding accuracy evaluations are em-1141

ulated on a GPU server to enable faster iterations and en-1142

ergy savings. Embedding inference latency, power consump-1143

tion, and memory usage are directly measured by running1144

Reminisce on a mobile device using the open-source on-1145

device multimodal inference engine mllm [19]. Since mllm [19]1146

currently does not support the IMU modality and lacks GPU1147

optimizations, we also use PyTorch on a development board1148

for broader dataset comparisons.1149

E More Detailed Throughput Analysis1150

Table 5 summarizes the embedding throughput comparison,1151

serving as a numerical appendix of illustrative Figure 4.1152

F Multimodal Retrieval Demo1153

G Micro experiments for design rationales1154

H Pre-exit Predictor in detail1155

We summarize the use of the pre-exit predictor in Algo-1156

rithm 1. First, we load Layer𝐿 and encode all input data as1157

a batch, while Layer𝐿+1 is loaded concurrently to minimize1158

loading time. This process iterates until all 𝐿 layers are1159

19
MEM

(CVPR’23)

BranchyNet
(ICPR’16)

MEM 
(Batched)

Fluid
Batching

(Samsung AI’22)
Ours

(a) Jetson Orin (INT8).

MEM
(CVPR’23)

BranchyNet
(ICPR’16)

MEM 
(Batched)

Fluid
Batching

(Samsung AI’22)

Ours

(b) Jetson TX2 (INT8).

Supplementary Figure 7: System performance under different operating modes. Dataset: COCO.

Revised supplementary line 1137–1147
Furthermore, as shown in Figure 7, more aggressive operating modes generally lead to higher system
throughput. For example, on ORIN, using MAXN mode provides a 1.4× throughput improvement
compared to MAXQ mode, albeit at a 6.3× increase in power consumption. Therefore, selecting an
appropriate operating mode based on the specific device characteristics and requirements is crucial
for optimizing the performance-energy tradeoff. Fortunately, Reminisce consistently demonstrates
superior efficiency across different execution modes, enabling a more flexible trade-off between
throughput and energy consumption.

{ Comment 3: The proposed methodology appears to be a combination of existing techniques.
The proposed pipeline heuristically balances the computational cost and performance of the
method. However, similar results could be achieved in various ways. I do not see a clear advantage
over other possible methodologies. The authors should more clearly explain the novelty of their
approach compared to existing methods.

{ Response 3: Thank you for the thoughtful comment. Our work introduces the first end-to-end,
on-device multimodal embedding system, incorporating a series of optimizations specifically
designed for resource-constrained mobile devices to achieve superior efficiency and effectiveness.
We have clarified the methodological novelty and its advantages over existing approaches as
below:
- Coarse-grained embedding: The core design of Reminisce lies in its coarse-grained embed-

ding strategy, built atop early-exiting (Figure 3a, lines 198–210). Coarse-grained embeddings,
generated by early-exited MEMs, are used to filter likely candidates during retrieval queries.
These candidates are then refined by the remaining layers of the exited MEMs at query time
for accurate retrieval. This design is inspired by the top-down predictions of cognitive brains
(line 87). The brain initiates top-down predictions based on partially processed input, and
refines them with detailed information. To the best of our knowledge, this is the first efficient



multimodal embedding system designed for mobile devices.
Unlike prior methods (e.g., pruning, quantization), our approach preserves the original model
structure, avoids the need for advanced implementation which is often unsupported on mobile
(lines 568–573), enables to reuses intermediate activations to significantly reduce redundant
computation during embedding and query phases (lines 574–584), and offers a border trade-off
space for performance and accuracy (lines 584–589).

- Mobile-specific optimizations: We introduce three hardware-software co-designed optimiza-
tions that significantly enhance Reminisce’s performance, making it practical and efficient for
mobile deployment. These optimizations address limitations overlooked by existing early-exit
methods, which are primarily tailored for single-modality tasks on desktop or cloud platforms.
Previous early-exiting approaches neither account for mobile-specific resource constraints nor
effectively incorporate coarse-grained embeddings for multimodal data (Supplementary lines
898–932). (1) Data-aware pre-exit prediction (Figure 3b) enables efficient batching and
pipelined execution, unlike traditional early-exit methods that determine exits after each branch
computation and are incompatible with batching (lines 211–224). (2) Progressive LoRA healing
(Figure 3c) adapts low-rank adaptation (LoRA) to progressively share adapted parameters,
allowing reuse of intermediate LoRA activations across exits while minimizing performance
degradation (lines 226–239). (3) Speculative fine-grained retrieval (Figure 3d) leverages
query embeddings from different exits for speculative filtering, addressing imbalanced retrieval
performance when matched with coarse-grained multimodal embeddings (lines 240–249).

- Empirical evaluation: Our extensive experiments in §2.5 demonstrate that, with these designs,
Reminisce outperforms exisiting methods while ensuring accurate retrieval. We evaluate
Reminisce on multiple mobile devices, achieving an average 12.4× improvement in throughput
compared to the original MEM (lines 334–350). Even compared to advanced baselines like
Fluid Batching, Reminisce achieves a 2.4× speedup in throughput (lines 351–360). Each
design contributes to the overall performance improvement (lines 362–388). We further conduct
a case study using recent Twitter data and a user study based on mobile application traces
collected from eight users over one week, demonstrating the practicality of Reminisce in
real-world scenarios (lines 437–489).

Revised manuscript line 198–208: Description of coarse-grained embedding
As shown in Figure 3a, the core design of Reminisce is the coarse-grained embedding, built upon
the early-exit mechanism. This approach offloads the computation of the full embedding to the
less frequent, intent-specific query phase. Specifically, embeddings generated by early-exited MEMs
serve as coarse-grained embeddings to filter the most likely candidates during retrieval queries.
These candidates are further refined by the remaining layers of the exited MEMs at query time to
ensure accurate retrieval. We are the first to propose and prototype a mobile-friendly early-exit
system for efficient multimodal embedding.



Cache reuse
Memory Encodere

② Data-aware pre-exit predictor (𝐷!)

Live Encoder

Message Query

“Pre-exit” 
model

Memory Encoder Live Encoder

Full Encoder

Memory Encoder

①Progressive LoRA healing (𝐷")
Superficial 

EncoderDeployment

Memory Encoder

Cache reuse

Match #1

Cache reuse
Match #2

Result

③ Speculative fine-grained retrieval (𝐷#)

System developer preparation Client offline embedding Client online query

Superficial embedding Coarse-grained embedding Fine-grained embedding

Memory EncoderMemory Encoder

Memory 
Encoder Lo

ra

x

Memory 
Encoder Lo

ra

Memory 
Encoder Lo

ra

h

Memory 
Encoder Lo

ra

Memory 
Encoder Lo

ra

Exit #1 Exit #2
(Previous)

Exit #2
(Ours)

From 
scratch

Reuse 
h of #1

Storage

Coarse-grained 
Embedding

Fine-grained 
Embedding

①

②

③

Tran.

Tran.

Tran.

Tran.

Me
mo
ry
 e
nc
od
er

Tran.

Tran.

Fine-grained
embedding

Candidate 
lists

Tran.

Tran.

Tran.

Tran.

Cache
reuse

Tran.

Tran.

Cand. 
#1

Local
data

Transformer
blocks

Query

Li
ve

en
co
de
r

(1) Speculative filtering
(2) Verifying

(3) Correcting

… …

……

Cand. 
#2

Cand. 
#N-1

Cand. 
#N

Unbalanced 
coarse-grained 
embedding space

Cache
reuse

Transformer
blocks

Traditional EE literature

Batch

Embed

Pre-exit
Predictor

Superficial
Embedding

Coarse-grained
Embedding

Logit
Not confident

Pipeline

Exits
info Ours

Exit infoLoad
Comp.

Load Load

Load Load

Load Load Load

a

b

c

d

Figure 3. Illustration of the proposed Reminisce. (a) Concrete workflow of Reminisce with
system Designs1,2,3. (b) Illustration of Design 1: Data-aware pre-exit and its advantage over
traditional early exiting. (c) Illustration of Design 2: Comparison between our progressive LoRA
and previous methods. (d) Illustration of Design 3: Coarse-grained embeddings are speculatively
filtered. The highest-ranking embedding candidates are refined to fine-grained embeddings for final
retrieval.

Revised manuscript line 567–589: Advantage of Our Coarse-grained Embedding
We choose early exit as the backbone of Reminisce because it aligns with our design principles:
(1) Early exit is mobile hardware-friendly: it requires no sparsification kernel compilation and
integrates easily into existing multimodal embedding applications. Most mobile devices do not
fully support advanced sparsification or quantization optimizations, providing little to no benefit
during inference [45–49]. (2) Early exit preserves the raw structure of MEMs, maintaining
their generalization capacity while bypassing only downstream alignment. Additionally, early
exit is caching-friendly, as the top layers share the same bottom weights with the exited layers,
allowing intermediate activations to be reused and reducing duplicated computations. Other
techniques like pruning and quantization cannot fully leverage the intermediate computation of
coarse-grained embeddings. This reduction is crucial for Reminisce, as it eliminates redundant
forward passes, accelerating both embedding and query phases, which we discuss in §4.5. (3)
Compared to quantization, early exit offers a broader trade-off space. As shown in our experiments
(Supplementary Figure 4a), easy inputs require only one layer (just 3% of total computation) to
achieve accurate results. Such a large reduction in cost is not possible with quantization.



Revised manuscript line 211–249: Mobile-Specific Optimizations
Data-aware pre-exit prediction (§4.2) Traditional early-exit methods determine exits at the
end of each branch computation, causing inconsistent workloads and memory fragmentation [26],
and existing predictive models for CNNs cannot effectively scale to multimodal embedding models
due to their convolution-specific design [27, 28]. Our observation is that different data inherently
carry varying amounts of information (Supplementary Figure 4a), and intermediate multimodal
embeddings provide effective cues for determining optimal exit points (Supplementary Figure 4b).
Based on this unique observation, we propose a unified, lightweight early-exit predictor that leverages
these intermediate embeddings to preemptively determine the exit layer, enabling batch scheduling
for improved parallelism and amortizing loading times (Figure 3b).
Progressive LoRA Healing (§4.3) Previous early-exit healing approaches [29] utilize LoRA [18] to
fine-tune NLP models for earlier exits. However, these methods fine-tune separate LoRA modules
for each exit, preventing the reuse of intermediate results and thereby negating early-exit benefits
on mobile devices. As illustrated in Figure 3c, we propose sharing previously tuned parameters,
significantly reducing the number of layers required per token and enabling reuse of intermediate
activations. Based on our observation that sharing LoRA weights at top layers is more effective
(Supplementary Figure 4), we propose a progressive LoRA healing method that incrementally
increases tuning depth (number of shared layers) at later exits to minimize performance degradation
from shared LoRA weights.
Speculative Fine-grained Retrieval (§4.4) Using a full-capacity encoder to generate query em-
beddings leads to unbalanced retrieval performance when matched with coarse-grained embeddings,
resulting in poor top-1 retrieval accuracy (Supplementary Figure 6). To address this issue, we
introduce a speculative fine-grained retrieval mechanism (shown in Figure 3d) to balance the
retrieval process. It first performs speculative filtering using query embeddings at all granularities
and then refines the selection through a second, fine-grained matching stage.

{ Comment 4: In Figure 5, the authors present results for the Jetson TX2, while in Figure 2 it is
not included. Why?

{ Response 4: We thank the reviewer for pointing out this inconsistency. In the initial submission,
we presented partial results in figures and tables to save space. In the revised manuscript, we have
added new illustrations (see Figure 4 and Supplementary Table 2) that include comprehensive
results for all evaluated devices, including Jetson TX2. We also better clarified which device is
used in the caption of each figure/table.

{ Comment 5: Table 2 is extremely terse. A different way to visualize these data could help
readers better understand the benefits of the proposed approach. Additionally, the observed
out-of-memory issue could likely be avoided by using FP16 or INT8 quantization.

{ Response 5: We thank the reviewer for the constructive suggestions. In the revised manuscript,
we have replaced the original Table 2 with a more illustrative visualization (Figure 4) to better
highlight the benefits of our approach. The original Table 2 has been refined and relocated to
Supplementary Table 3. Relevant figure and table can be found under Response 2.
Regarding the out-of-memory issue, we agree that using lower-precision formats such as INT8 can
help mitigate the OOM issues. We have applied quantization to the baselines accordingly. The
updated results of all baselines are now included in the refined Supplementary Table 3, providing
comprehensive numerical comparisons.



{ Comment 6: The section “Significance of Key Designs” is introduced before sufficiently explaining
the key designs.

{ Response 6: We thank the reviewer for the helpful observation. In the revised manuscript, we
have expanded the introduction section and added an illustrative figure and a new subsection
in method section to explain the key designs in detail (Figure 3, lines 83–118, 197–249) before
presenting their significance in the evaluation section.

{ Comment 7: Figure 7 presents the inference time without specifying the target devices or the
quantization method used. The search time for most thresholds is still far from real-time, reaching
up to 10 seconds.

{ Response 7: We thank the reviewer for the helpful comment. The experiment shown in Figure 7
(now reorganized as Figure 5b in the revised manuscript) was conducted on Jetson Orin with the
model quantized to INT8.
As for search time, we optimized it to be only 300ms slower than naive multimodal retrieval by
using a quantized model (§ 2.5.3: lines 389–416). With quantization, the full model fits into
device memory without the need for layer-wise execution, allowing queries complete within 1.5
seconds to achieve with decent retrieval accuracy. In comparison, naive multimodal retrieval
takes about 1.2s to finish query embedding and embedding-matrix matching. The extra latency
overhead of 300ms is acceptable given the infrequent nature of such queries and the system’s
advantage in achieving up to 31× improvement in the throughput of frequent data embeddings.
Additionally, our design supports further query latency reduction for frequently accessed items,
akin to web cookies, by bypassing redundant fine-grained embedding computations.

Revised manuscript §2.5.3 (lines 389–416) Impact of Query Latency Budge
Although query costs are negligible compared to embedding costs in the long run—since queries
occur less frequently than continuous daily embeddings—they are immediately noticeable to users.
Thus, we illustrate Reminisce’s performance under different query latency budgets in Figure 5b.
During queries, the device holds the entire quantized model in memory without layer-by-layer
loading. Given the infrequency of queries, the temporary memory increase is acceptable. Query
latency comprises three components: query embedding, matching, and fine-grained embedding.
Baseline methods with memory encoders require only the first two steps, typically taking around
1.2s. Reminisce takes less than 1.5s (the default latency budget used in §2.5.1) to achieve
acceptable query accuracy. As shown, if the system tolerates higher query delays, performance
can be further enhanced. For example, on the FLICKR dataset, the relative retrieval accuracy of
Reminisce improves from 92% to 99% after refining an additional 10 candidates (≈0.2s).
Additionally, similar to web cookies [41], the query process can skip the complex fine-grained
embedding when repeated, improving efficiency in multi-query scenarios where frequently queried
items are retrieved faster. Once a local embedding is queried, its embedding is permanently
upgraded. Under these conditions, the system becomes more efficient by skipping the fine-grained
embedding process for frequently queried items.



��	 ��
 ��� ���

�!� ��#� %�����%�����"��!�

���

���

��

���

���

���

�
�
��

"
�$

�
��

�
�
#
 
�
�
%

�# !

��

���

��	 ��
 ��� ���

�!� ��#� %�����%�����"��!�

��


���

���

��

���

���

���

�
�
��

"
�$

�
��

�
�
#
 
�
�
%

�# !

��

���

w/o
fine

grained w/o
fine

grained

FLICKRCOCO
��	 ��
 ��� ���

���������!�����!����������

���

���

���

�
�
��
�
� 
�
�
�
�
�
�
�
�
!

����

��

���

��	 ��
 ��� ���

���������!�����!����������

��


���

���

���

�
�
��
�
� 
�
�
�
�
�
�
�
�
!

����

��

���

��	 ��
 ��� ���

���������!�����!����������

���

���

���

�
�
��
�
� 
�
�
�
�
�
�
�
�
!

����

��

���

��	 ��
 ��� ���

���������!�����!����������

��


���

���

���

�
�
��
�
� 
�
�
�
�
�
�
�
�
!

����

��

���

embed
31x faster

embed
22x faster

Figure 5b Performance under different query latency budgets on ORIN (INT8).

{ Comment 8: The same concern applies to Figure 8. What device was used? What was the
measurement setup?

{ Response 8: We thank the reviewer for raising this point. Figure 8 (now updated as Figure 6 in
the revised manuscript) presents the energy comparison conducted on Jetson Orin, with model
weights quantized to INT8. The measurement setup is now clearly specified in the figure caption.

{ Comment 9: In the subsection “Case Study: Twitter Meme Retrieval,” the analysis is too
shallow.

{ Response 9: We thank the reviewer for the valuable feedback. In the revised manuscript, we
have expanded the case study analysis in Figure 7 and §2.5.5 (lines 437–475) by incorporating
a comparison with additional baselines to highlight the advantages of our system on real-world
scenarios, and a more in-depth discussion of why and how our system outperforms existing
methods.

COCO0

5

10

15

20

No
rm

al
ize

d 
en

er
gy

 (×
) Naive MEM MEM BranchyNet Fluid Batching Ours

FLICKER0.0

2.5

5.0

7.5

10.0

12.5

CLOTHO0

10

20

30

HARSMART 0

5

10

15

Figure 7. Comparison of energy consumption for different methods. Device: ORIN (INT8).



Revised manuscript §2.5.5 (lines 437–475) Case Study: Twitter Meme Retrieval
To demonstrate the practicality of Reminisce in real-world scenarios, we conducted a case study
using daily surfing images and captions collected from Twitter memes as illustrate in Supplementary
Figure 8. End users filtered the data to ensure privacy, and a total of 805 figures were collected
to simulate 30 minutes of surfing. Our evaluation compares multiple methods—including Naive
MEM without layer-wise execution, the MEM baseline, BranchyNet, Fluid Batching, and our
Reminisce —in terms of throughput, energy, memory, and retrieval accuracy.
As shown in Figure 7, all baseline methods take over 80 minutes to complete the retrieval task on
a fully utilized CPU. Naive MEM incurs a large memory footprint by loading the entire model at
once, even with INT4 quantization. Its layer-wise execution counterpart (MEM baseline) reduces
memory usage but significantly decreases throughput due to frequent layer-switching overhead.
BranchyNet improves throughput by skipping layers but at the expense of lower accuracy. In contrast,
Reminisce completes the same task in 28 minutes—achieving a 3× throughput improvement
compared to even the strong baseline Fluid Batching, due to our mobile-friendly optimizations.
Our approach reduces peak memory usage by 7× compared to Naive MEM, lowering the footprint
below 200MB. This includes a small buffer (under 50MB) for pipelined execution and temporary
activations—a reasonable tradeoff for performance gains. Energy consumption is reduced by up to
4×, enabled by fewer layer computations and more efficient batching. The system also achieves
higher retrieval accuracy than naive early-exit methods while maintaining an acceptable query
latency of just 0.5 seconds. The additional memory overhead from batching parallelism is justified
by the substantial performance improvements.
These quantitative improvements—from faster processing and lower resource consumption to robust
retrieval performance—demonstrate that Reminisce is highly practical for deployment in mobile
scenarios, where computational efficiency and low-latency requirements are critical.

{ Comment 10: Unclear sentence: "The generated embeddings can be easily retrieved to help
mobile users remember and recall information when needed." The meaning should be clarified.

{ Response 10: We have clarified the meaning in the revised manuscript (line 3–6).

Revised manuscript (line 3–6)
Once generated, these embeddings enable mobile users to quickly retrieve relevant information,
effectively augmenting their memory.

{ Comment 11: Typo: "Based on the trace statistics in §, typical" – The reference format needs
correction.

{ Response 11: Thank you for kind reminder. We have fixed this format typo in the revised
manuscript

Revised manuscript (line 430)
Based on the trace statistics in §2.1, typical. . .

{ Comment 12: Typo: "This method outperforms fixed early-exit baselines, as will be shown in
§." – The section reference should be properly formatted.

{ Response 12: Thank you for kind reminder. We have fixed this format typo.

Revised manuscript (line 665)
This method outperforms fixed early-exit baselines, as shown in Figure 5a.



RESPONSES TO REVIEWER #2
{ Comment 1, Summary: The manuscript presents a valid contribution to the field of multimodal

embedding, specifically focusing on efficient on-device computation for resource-constrained
devices, including mobile. The proposed system, Reminisce, introduces a novel approach that
enhances retrieval efficiency while maintaining computational feasibility. The emphasis on
hardware-friendly design is particularly valuable, ensuring practical deployment of such models
on edge devices and closer results to real-world scenarios. Additionally, the study demonstrates
transparency regarding resource consumption, including memory and disk usage.

{ Response 1: Thank you for your positive evaluation and thoughtful suggestions. We are pleased
to contribute practical advancements to the nature research community.

{ Comment 2: What are the noteworthy results?
The work achieves significant gains in energy efficiency and throughput, making it well-suited for
real-world deployment on resource-constrained edge devices. The evaluation on physical (real)
hardware further strengthens its practical relevance and reliability.

{ Response 2: Thank you for recognizing the significance and thoroughness of our results.

{ Comment 3: Will the work be of significance to the field and related fields? How does it compare
to the established literature? If the work is not original, please provide relevant references.
Yes, this work is significant to the field. It enhances multimodal embedding with a strong focus
on hardware efficiency for edge (and mobile) devices. By optimising retrieval in constrained
environments, it extends real-world applicability beyond prior research.

{ Response 3: Thank you for acknowledging the significance of our work and our advantages over
prior research.

{ Comment 4: Does the work support the conclusions and claims, or is additional evidence needed?
Yes. However, a clearer explanation of the caching invalidation strategy is necessary, as multiple
caching mechanisms are involved (as pointed out in Figure 11).

{ Response 4: Thank you for your valuable suggestions. We have added a separate paragraph
(lines 776–787) and an illustrative workflow (Figure 9) to clarify the cache invalidation strategy
depicted in original Figure 11 (now Figure 3a in the revised manuscript).
In summary, all caches are invalidated immediately after assisting with updates to embeddings of
higher granularity. During the multimodal data embedding phase, intermediate superficial embed-
dings are invalidated immediately after obtaining the corresponding coarse-grained embeddings.
Coarse-grained embeddings are invalidated immediately after their first use in queries, i.e., when
refined into fine-grained embeddings. During the query phase, coarse-grained query embeddings
are cached for speculative retrieval and reused when computing fine-grained query embeddings
for final retrieval.

Revised manuscript line 776–787
To efficiently manage intermediate activations and avoid resource waste from stale data, we adopt
a cache invalidation strategy as shown in Figure 9. During offline embedding phase, intermediate
activations from superficial embeddings are temporarily stored in RAM to compute coarse-grained
embeddings. After each batch, these cached activations are sequentially invalidated from RAM.
Coarse-grained intermediate activations are subsequently stored on disk, which has fewer constraints
compared to RAM (see Supplementary §F for details). At query phase, cached embeddings matching
the incoming query are loaded to compute fine-grained embeddings and are promptly invalidated
afterward.



Update
&Invalidate

Update
&Invalidate

Fine-grained
embedding 1

...
Fine-grained
embedding N

Data 1

...

Data N

Superficial
embedding 1

...
Superficial

embedding N

Coarse-grained
embedding 1

...
Coarse-grained
embedding N

Query Coarse query
embedding

Indexed
candidates

Pre-exit
predictor

Query
embedding

Query 
results

RAM Cache Disk Cache

Speculative
query circle

Online
query

Offline
embedding

Update
&Invalidate

Figure 9: Invalidation strategy of Reminisce.

{ Comment 5: Are there any flaws in the data analysis, interpretation, and conclusions? Do these
prohibit publication or require revision?
No.

{ Response 5: Thank you for your acknowledgment.

{ Comment 6: Is the methodology sound? Does the work meet the expected standards in your
field?
The methodology is appropriate and meets field standards. The approach to on-device computation
is particularly strong, as it reduces energy consumption while maintaining retrieval performance,
and the motivation (privacy concern when using Cloud solutions) is solid.

{ Response 6: Thank you for acknowledging our contribution and motivation. We hope our work
will have the opportunity to achieve broader impact through publication in Nature Communications.

{ Comment 7: Is there enough detail provided in the methods for the work to be reproduced?
Most aspects are well-described, but the caching invalidation mechanism should be clarified for
readers.

{ Response 7: Thank you for your acknowledgment and helpful suggestion. We have clarified the
caching invalidation mechanism further in lines 776–787 and Figure 9. Please refer to Response 4
for more details.

{ Comment 8, Final Recommendation:
The study is well-executed and makes a valuable contribution to the field. Addressing minor
issues related to caching, terminology, and figure corrections will further enhance the clarity of
the manuscript.
Figure corrections are: Figure 6 ("Ous" - > "Ours"). Figure 3b requires clarification in the legend
regarding the meaning of the black and white bars colours.
Minor terminology inconsistencies: the misuse of "backend/frontend" where "background/-
foreground" would be more appropriate. Similarly, "backward" is incorrectly used instead of
"background" in the appendix.
Additionally, some redundant sentences in the appendix, such as "This causes the application to
be easily killed by the OS due to memory pressure," should be removed to improve readability.
With these refinements, I strongly support its publication.



{ Response 8: Thank you very much for your strong support and detailed suggestions. We have
addressed all the issues mentioned:
- The legend of Figure 6 (ablation studies, now re-located as Figure 5a in the revised manuscript)

has been corrected.
- The legend of Figure 3b (preliminary experiments on battery consumption, now reorganized as

Figure 2c) has been clarified. The white bars represent GPU power consumption, while black
bars represent CPU power consumption. This demonstrates that GPU’s higher throughput
comes at the expense of greater power usage, highlighting the necessity of our approach.

- Terminology consistency regarding "background/foreground" has been refined throughout the
manuscript.

- Many sentences in the appendix have been revised to improve readability.


� �� ��

��" %��!%$

���

��	

��


���

��

���

�
�
��
$
�&
�
��
�
�
%
"
�
�
'

����


� �� ��

��" %��!%$

���

��	

��


���

��

���

�
�
�
%
"
�
�
'

�����"

��� ������������ ����������� �%"#��������� �� �%"#


� �� ��

��" %��!%$

���

��	

��


���

��

���

�
�
��
$
�&
�
��
�
�
%
"
�
�
'

����


� �� ��

��" %��!%$

���

��	

��


���

��

���

�
�
�
%
"
�
�
'

�����"

��� ������������ ����������� �%"#��������� �� �%"#

COCO FLICKR

Fixed 
exiting
with 

different 
thresholds


� �� ��

��" %��!%$

���

��	

��


���

��

���

�
�
��
$
�&
�
��
�
�
%
"
�
�
'

����


� �� ��

��" %��!%$

���

��	

��


���

��

���

�
�
�
%
"
�
�
'

�����"

��� ������������ ����������� �%"#��������� �� �%"#

Fine-
grained
query
(𝑫𝟑)

Prog.
Heal
(𝑫𝟐)

Data-aware
pre-exit
(𝑫𝟏)

(a) Impact of key designs.

��	 ��
 ��� ���

�!� ��#� %�����%�����"��!�

���

���

��

���

���

���

�
�
��

"
�$

�
��

�
�
#
 
�
�
%

�# !

��

���

��	 ��
 ��� ���

�!� ��#� %�����%�����"��!�

��


���

���

��

���

���

���

�
�
��

"
�$

�
��

�
�
#
 
�
�
%

�# !

��

���

w/o
fine

grained w/o
fine

grained

FLICKRCOCO
��	 ��
 ��� ���

���������!�����!����������

���

���

���

�
�
��
�
� 
�
�
�
�
�
�
�
�
!

����

��

���

��	 ��
 ��� ���

���������!�����!����������

��


���

���

���

�
�
��
�
� 
�
�
�
�
�
�
�
�
!

����

��

���

��	 ��
 ��� ���

���������!�����!����������

���

���

���

�
�
��
�
� 
�
�
�
�
�
�
�
�
!

����

��

���

��	 ��
 ��� ���

���������!�����!����������

��


���

���

���

�
�
��
�
� 
�
�
�
�
�
�
�
�
!

����

��

���

embed
31x faster

embed
22x faster

(b) Impact of query budget.

Figure 5: Performance analysis of Reminisce’s key designs and query latency impact on ORIN
(INT8). (a) Throughput-to-accuracy trade-off with and without Reminisce’s key Designs(1,2,3).
PE refers to pre-exited coarse-grained embeddings without fine-grained upgrading during the query
phase. (b) Performance under different query latency budgets.

	�
���

	�
���

	�
��

	�
���

	�
���

	�
���

	�
���

	�
���

	

�	

	

�	

�	


		


�	


	


�	

�
�*
#�0

&"
1
"!

�&(
�$

"-
���
(
&)
/.
" ��."$*,&"!��++-

�).",.�&)(").����"!&�
�*((/)& �.&*)����* &�'

�.%",-
�,*!/ .&0&.2����.&'&.&"-

�"�'.%���,�0"'����&#"-.2'"
�%*++&)$����&)�) "

��
��
���
�!
���
�
��

��
��
���
�!
���
�
��

��
���
���
�!
���
�
��

�.
#*+
&��

���
��
!�
���
 �
�

�.
#*+
&��

���
�!
����
 �
�

�.
#*+
&��

���
��
!�
���
�
�




��

�


��

�



 )
0.
3(

)/
32
�

��
.-

2&
-2
1�
�
�	�
,
*-
�

�-2&02"*-,&-2����&%*"
�.,,3-*$"2*.-����.$*"+
�2)&01
�0.%3$2*4*25���!2*+*2*&1
�&"+2)�� 0"4&+����*'&125+&
�).//*-(����*-"-$&




��

�


��

�



�+
"/

1&
%�
&,

#&
%%

*-
(�

2*,
&�
�)
01
�

��
& 
��
�
�
+ 
 
(
��
(
�

�
$�
 
)
��
&�
1
 
+

�
1
,-
 
'
��
.
(
�
-$
)
(

�
#
)
+-
�!
)
+'
��
$�
 
)

�
#
�
-

�
 
-0
)
+%
��
-$
&$
-1

�
#
)
*
*
$(
"

�
�
'
$(
"

$(
-
��
�
�

!*
�
�
��
�
�

!*
�
�
��
�
�
�

�**���-$/$-1

	

�


	

�
)
0
 
+
��
0
�

�


	


�

�
,
�
�
& 
�-
$'

 
��
#
+
,
�

CPU

a b c GPU

Figure 2: Motivation of multimodal embedding on mobile devices and its challenge. (a) Viewed
image trace of mobile users. (b) MEM inference speed across different devices compared to the
average image generation speed of various mobile applications. (c) MEMs rapidly drain the battery
of the test mobile phone. * indicates GPU inference power consumption of the Jetson ORIN.

{ Comment 9, Reviewer #2 (Remarks on code availability):
My assessment of the code is that it is a usable resource for the community, with clear details
on installation and usage of the available scripts. It also considers important (open-source) OS
details, such as a clear definition of its OS license.

{ Response 9: Thank you for acknowledging our open-source efforts. We hope that our codebase
facilitates and encourages further research in this direction.


	TPR2
	RTRA1
	COVER LETTER
	AUTHOR INFORMARTION UPDATING LETTER
	GENERAL RESPONSES
	RESPONSES TO REVIEWER #1
	RESPONSES TO REVIEWER #2
	ORIGINAL REVIEWER COMMENTS


