
Ubiquitous Memory Augmentation via Mobile

Multimodal Embedding System

Dongqi Cai1,2, Shangguang Wang1*, Chen Peng1, Zeling Zhang1,
Zhenyan Lu1,3, Tao Qi1, Nicholas D. Lane2,4*, Mengwei Xu1*

1*State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China.

2Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK.

3Pengcheng Laboratory, Shenzhen, China.
4Flower Labs, London, UK.

*Corresponding author(s). E-mail(s): sgwang@bupt.edu.cn;
ndl32@cam.ac.uk; mwx@bupt.edu.cn;

Abstract

Forgetting is inevitable in human memory. Recently, multimodal embedding
models have been proposed to vectorize multimodal reality into a unified embed-
ding space. Once generated, these embeddings allow mobile users to quickly
retrieve relevant information, effectively augmenting their memory. However, as
the model’s capacity increases, its resource consumption also rises. The resulting
slow throughput and significant computational resource requirements hinder its
deployment on mobile devices. In this paper, we present Reminisce, an efficient
on-device multimodal embedding system that enables high-throughput embed-
ding and precise retrieval on resource-constrained mobile devices. The core design
draws inspiration from the memory functions of the human brain, utilizing coarse-
grained embeddings to identify likely candidates, which are then refined through
query-driven fine-grained retrieval. A series of algorithm-hardware orchestrated
optimizations automatically navigates this process and strenghen the embedding
quality. Experiments show that Reminisce provides high-quality embedding rep-
resentation with high throughput while operating silently in the background with
negligible memory usage and reduced energy consumption.

1



Introduction

Mobile devices are ubiquitous nowadays. They capture lots of data in users’ daily
usage, digitally chronicling every aspect of a person’s life. However, such data has not
been fully utilized, attributed not to how to store them, but how to accurately retrieve
them [1]. Specifically, smartphones have abundant storage (up to 1TB for iPhone 15
Pro) to host the information captured at 24×7, or local network-attached storage can
help accommodate those data as well; yet there has been a lack of method to efficiently
locate the data intended at query time [2, 3]. The fundamental challenge is that data
generated on devices is multimodal by nature (e.g., text, image, audio, etc), which
are hard to be accurately retrieved in a user-friendly manner, e.g., through natural
language [4].

Fortunately, the recent development of multimodal embedding models (MEM) has
shed light on multimodal data retrieval. For example, CLIP unifies text and image
modalities into one embedding space [5]. ImageBind further extends the functionality
to 6 modalities through contrastive learning [6]. At architecture level, those models
primarily consist of multi-layer transformer encoders [7]. In general, MEMs will cate-
lyze two exciting types of mobile applications as shown in Figure 1: (1) cross-modality
searching, which allows users to retrieve data in any modality with user-friendly
interface; (2) retrieval-augmented LLM generation, which first identifies the relevant
multimodal data (e.g., a picture) in a historical database with user prompt, and uses
it to enhance the LLM generation quality, e.g., “in the picture I took for my kid
yesterday, is she wearing a blue skirt or yellow?”.

This work addresses the emerging scenario of on-device multimodal embedding,
where MEMs operate as a system service on local devices to embed continuous data
streams [8–11], functioning like a memory palace [12]. The local generation of embed-
dings is motivated by user privacy concerns, since MEMs can greatly expand the usage
of device data, including screen UIs, recorded voices, etc. Offloading such information
to the cloud may expose it to unauthorized access. For instance, it was revealed that
Apple had been eavesdropping on uploaded user conversations to enhance their Siri
model [13]. With cloud-based MEMs, users risk comprehensive life surveillance, with
no way to verify.

Despite on-device MEM is private and generalizable to various downstream
tasks [6, 14–16], it comes at a cost of resource intensity. Specifically, our pilot exper-
iments identify two key obstacles towards on-device multimodal embedding: (1) Low
embedding throughput. It takes dozens of seconds for billion-sized MEMs to embed
a single image, which is significantly slower than the rate at which mobile devices
generate data. As a result, even if the device runs continuously throughout the day,
only 20% of daily information can be embedded. (2) High energy consumption. The
slow inference speed, combined with the immense computing power required, results
in high energy consumption. Embedding data from applications consumes even more
energy than running the applications themselves. As a result, the battery life of mobile
devices is significantly reduced, often to less than 2 hours. Even if the embedding
process is batched and executed offline (e.g., when the device is idle), its substantial
resource demands still hinder practical deployment.

2



Reminisce is an efficient on-device multimodal embedding system. Its key idea is
coarse-grained embedding, built upon the early-exiting technique. It draws inspiration
from the top-down predictions of cognitive brain [17]. Embeddings from early-
exited MEMs serve as coarse-grained representations to filter likely candidates during
retrieval. These candidates are then refined by the remaining layers at query time for
final selection. While early exiting avoids full model execution during memorization,
three key system challenges remain on mobile devices: low parallelism, limited exiting
benefits, and performance degradation. To further promote the practical deployment
of Reminisce, we propose three software-hardware co-designs: (1) Data-aware pre-
exit predictor is a unified, lightweight early-exit predictor model applicable across all
modalities. It facilitates efficient batching and pipeline execution, improving encoding
throughput; (2) Progressive LoRA healing retrofits low-rank adaptation (LoRA) [18],
a popular parameter-efficient fine-tuning method, to ensure high retrieval performance
with earlier exits by progressively increasing shared bottom layers. This enables inter-
mediate results to be cached and reused; (3) Speculative fine-grained retrieval. Query
embeddings from different exits are used for speculative filtering, with top candidates
from each granularity undergoing a second matching round for accurate final retrieval.

Our extensive experiments demonstrate that, with these designs, Reminisce accel-
erates the multimodal embedding process while ensuring accurate retrieval. We
evaluate Reminisce on multiple mobile devices, achieving an average 12.4× improve-
ment in throughput compared to the original MEM. We further conduct a case study
using recent Twitter data and a user study based on mobile application traces col-
lected from eight users over one week, demonstrating the practicality of Reminisce in
real-world scenarios.

Results

Overall Framework

As shown in right side of Figure 1, we prototype an on-device MEM-powered search
service to embed multimodal streaming data for future retrieval, functioning like a
memory palace [12]. We specifically target mobile devices, including smartphones and
IoT devices with similar computing capabilities. These devices have usable but weaker
processing units compared to cloud servers, with limited battery and memory available
for long-term background processes [19].

3



From the device perspective, the service has two runtimes:

• Embedding runtime (Offline remembering in the background). continuously detects
and stores newly generated multimodal content, such as downloaded images,
scanned texts, listened-to audio, and logged IMU sensor data. Each item is pro-
cessed layer by layer through MEMs, as deep learning models are often too large
for mobile devices. This can lead the OS to terminate inference processes. Current
mobile inference engines support layerwise execution to accommodate large mod-
els [20, 21]. A 1024-dimensional embedding is generated for each item in a unified
space.

• Query runtime (Online recall in the foreground). is triggered when the user searches
for a specific item or performs other tasks based on search results. To retrieve
relevant items, the query embedding is compared with stored embeddings to find
the most similar matches. If the raw data corresponding to the matched embeddings
aligns with the query intent, the query is tagged as successful.

System developers prepare the embedding model offline, typically by fine-tuning
with powerful cloud GPUs, using widely-used pretrained multimodal embedding mod-
els [5, 6]. They define the expected offline costs and online performance for each
application by configuring system hyperparameters before deployment.

Preliminary Measurements

First, we present a preliminary study to demonstrate the utility and efficiency of on-
device multimodal embedding in real-world scenarios. We conducted a user study to
collect viewed images from daily mobile applications used by 8 volunteers, aged 20
to 52, over the course of a week. To achieve this, we developed an Android applica-
tion with accessibility services [22] to detect and store newly appeared visual content.
Images are hashed to include only new content. Images smaller than 100KB are
excluded to avoid capturing icons and minor system elements. One collected trace is
illustrated in Figure 2a.

MEMs are observed to be contextually expressive. All images and correspond-
ing texts are collected and embedded using ImageBind [6]. By aligning multimodal
embeddings into a unifed space, ImageBind can effectively retrieve semantically rel-
evant content from different modalities using human-friendly inputs (Supplementary
Figure 2).

To assess the cost of on-device embedding, we ran ImageBind inference on four
different mobile devices, ranging from development boards to commodity smartphones.

Despite their contextually expressive capabilities, the embedding speed is too slow
to keep pace with the figures generated by applications. As shown in Figure 2b, on
all CPU-based devices, the encoding speed is insufficient for real-time application use.
Over a full day of usage, the speed is only sufficient to embed 20% of the figures
generated by applications, requiring more than 100 hours to process all figures from a
single day. Even with a GPU, Jetson NANO [23] struggles to handle an entertainment
task generating 36.3 images per minute. The only exception is the NVIDIA ORIN [24],
which performs comparably to a cloud server using an NVIDIA A40 [25]. However,

4



continuously running the CPU or GPU on mobile devices is impractical due to battery
depletion.

The heavy embedding workloads and low throughput strain battery life. Continu-
ous embedding drains the battery even faster than running the app itself. To illustrate,
we used ImageBind to continuously embed figures from daily apps. As shown in
Figure 2c, the embedding process consumes more energy than the apps themselves. For
example, even when quantized to INT4, MEMs consume 1.8× more energy than gam-
ing. We also measured GPU energy consumption on an NVIDIA ORIN. While GPUs
process data faster, they consume more energy than CPUs, making them unsuitable
for long-term embedding in the current MEM design.

System Designs

As shown in Figure 3a, the core design of Reminisce is the coarse-grained embedding,
built upon the early-exit mechanism. This approach offloads the computation of the
full embedding to the less frequent, intent-specific query phase. Specifically, embed-
dings generated by early-exited MEMs serve as coarse-grained embeddings to filter the
most likely candidates during retrieval queries. These candidates are further refined
by the remaining layers of the exited MEMs at query time to ensure accurate retrieval.
We propose and prototype this mobile-friendly early-exit system for efficient multi-
modal embedding. Three hardware-software co-design optimizations further enhance
the performance of Reminisce, making it practical for mobile devices.

The first optimization is data-aware pre-exit prediction (§4). Traditional early-exit
methods determine exits at the end of each branch computation, causing inconsistent
workloads and memory fragmentation [26], and existing predictive models for CNNs
cannot effectively scale to multimodal embedding models due to their convolution-
specific design [27, 28]. Our observation is that different data inherently carry varying
amounts of information (Supplementary Figure 4a), and intermediate multimodal
embeddings provide effective cues for determining optimal exit points (Supplementary
Figure 4b). Based on this unique observation, we propose a unified, lightweight early-
exit predictor that leverages these intermediate embeddings to preemptively determine
the exit layer, enabling batch scheduling for improved parallelism and amortizing
loading times (Figure 3b).

The second optimization is progressive LoRA healing (§4). Previous early-exit
healing approaches [29] utilize LoRA [18] to fine-tune NLP models for earlier exits.
However, these methods fine-tune separate LoRA modules for each exit, preventing
the reuse of intermediate results and thereby negating early-exit benefits on mobile
devices. As illustrated in Figure 3c, we propose sharing previously tuned parameters,
reducing the number of layers required per token and enabling reuse of intermediate
activations. Based on our observation that sharing LoRA weights at top layers is more
effective (Supplementary Figure 5), we propose a progressive LoRA healing method
that incrementally increases tuning depth (number of shared layers) at later exits to
minimize performance degradation from shared LoRA weights.

The third optimizations is speculative fine-grained retrieval (§4). Using a full-
capacity encoder to generate query embeddings leads to unbalanced retrieval perfor-
mance when matched with coarse-grained embeddings, resulting in poor top-1 retrieval

5



accuracy (Supplementary Figure 6). To address this issue, we introduce a speculative
fine-grained retrieval mechanism (shown in Figure 3d) to balance the retrieval process.
It first performs speculative filtering using query embeddings at all granularities and
then refines the selection through a second, fine-grained matching stage.

Experimental Setup

The default MEM model is pretrained ImageBind (huge version) [6]. ImageBind
extends the visual and textual pretrained encoder of CLIP [5] with additional capac-
ity that embeds 6 modalities into a shared space. To demonstrate the scalability and
versatility of Reminisce, we also evaluate it on CLIP. Over 80% (35 out of 43) of recent
multimodal foundation models are based on those two MEM models [30].

We compare Reminisce to the following alternatives: (1) Multimodal Embedding

Model (MEM) without any optimization. (2) BranchyNet [26], using a traditional early-
exit mechanism. (3) Fluid Batching [31], an early-exit-aware batching algorithm
that allows sample preemption at runtime. For completeness, we also include a naive
baseline using monolithic model, i.e., without layer-wise execution, though it incurs
nearly unaffordable memory footprint on certain mobile devices. For a fair comparison,
all baselines are equipped with ImageBind fine-tuned for the downstream task.

We evaluate the performance of Reminisce using the following metrics: (1) Accu-
racy: Retrieval accuracy for each task, with relative accuracy compared to the full-sized
MEM model finetuned on the corresponding dataset. (2) Latency: Query latency on
mobile devices, defined as the time from query initiation to completion. (3) Through-
put: The amount of content processed per second or minute, assuming all samples are
buffered in storage. (4) Energy Consumption: Energy consumed during the embedding
phase. (5) Memory Usage: Peak memory footprint during the embedding phase.

As summarized in Table 1, we use four publicly available datasets across four
modalities to demonstrate the effectiveness of Reminisce: (1) COCO dataset: Used for
text-image retrieval, it contains 123k images, each paired with five captions. We use
the validation subset of COCO to evaluate inference performance, with each caption
retrieving its corresponding image. For example, given a caption, 75% of the relevant
images are successfully retrieved within the top five results (R@5), based on the full-
sized MEM model finetuned on the COCO dataset. (2) FLICKR dataset: Used for image-
text retrieval, it consists of images paired with textual descriptions. Abosulte retrieval
accuracy is 70% for the fine-tuned full-sized MEM model. (3) CLOTHO dataset: Used for
text-audio retrieval, it contains audio clips paired with textual descriptions, enabling
evaluation across audio and text modalities. Full-sized MEM model achieves 30%
retrieval accuracy. (4) HARSMART dataset: Used for IMU retrieval, it employs fine-
grained embeddings as queries to assess performance in retrieving IMU data based on
embeddings. The MEM model achieves 78% retrieval accuracy.

Additionally, to demonstrate the effectiveness of Reminisce in real-world scenarios,
we conduct a case study using recent internet data that was not seen by the model
during pretraining. Following prior empirical literature on Twitter analysis [32], we
collect a recent publicly available dataset of Twitter memes, referred to as TWITTER.
The TWITTER dataset contains 803 images and their corresponding meme descriptions
across various up-to-date topics.

6



We evaluate Reminisce on the NVIDIA ORIN (ORIN) [24], Jetson TX2 (TX2) [33],
Raspberry Pi 4B (RPI4B) [34], and a flagship smartphone with Qualcomm Snapdragon
8Gen3 (8GEN3) [35]. The default operating mode for ORIN is MAXQ, which is the
most cost-effective mode with four large cores disabled. For the Jetson TX2, we select
the MAXN mode, the most powerful mode available, to fully utilize GPU computing
power. To reduce memory consumption, we quantize the model to INT4 precision
for the 8GEN3 smartphone and INT8 precision for ORIN, TX2, and RPI4B. Please
refer to Supplementary for more implementation details about hardware specification,
executing mode specifications and quantization. Reminisce runs on the GPU for the
ORIN and TX2 boards. For the RPI4B and the 9GEN3 smartphone, Reminisce runs
on the CPU due to the lack of CUDA support. Current mobile inference engines cannot
effectively utilize GPUs for MEM execution [9, 20, 36].

Evaluation Statement

We evaluate Reminisce to address the following key questions: (1) How much improve-
ment does Reminisce achieve in terms of embedding throughput and relative retrieval
accuracy under different memory budgets across various devices? (2) How much per-
formance improvement does each component contribute? (3) What is Reminisce’s
performance under different query latency budgets? (4) What is the system cost of
Reminisce? (5) How does Reminisce perform on commodity mobile phones in daily
usage scenarios?

End-to-end Performance

First, we present the end-to-end embedding throughput performance under the layer-
wise inference setting, a more user-friendly approach for always-on daily applications
due to its low memory footprint.

Reminisce achieves an order of magnitude improvement in throughput. Figure 4
shows that Reminisce can achieve a 12.4× average throughput improvement compared
to MEM. This gain is primarily driven by the early-exit mechanism, which allows the
model to exit early when the embedding is sufficiently accurate, avoiding unneces-
sary computations. Additionally, after parameter-efficient healing, the coarse-grained
embeddings can convey similar semantics to fine-grained embeddings. For instance,
in the text-audio retrieval task CLOTO on Jetson ORIN, Reminisce achieves a 45×
throughput improvement with less than 3% relative accuracy loss under the default
query latency budget of 1.5s.

Regarding stronger baselines, Fluid Batching introduces a early-exit-aware
batching mechanism, achieving a 3× throu ghput improvement over the naive early-
exiting baseline BranchyNet and 6× over MEM under the layer-wise inference setting.
However, Reminisce still outperforms Fluid Batching across all datasets, providing
up to 2.4× speedup in throughput. The advantages of Reminisce arise not only from
the early-exit mechanism but also from the pre-exit strategy, which predictively adjusts
the embedding granularity based on the sample’s characteristics.

7



Significance of Key Designs

As illustrated in Figure 5a, while the zero-shot embedding of ImageBind has the
generalization ability across different datasets, the exit healing mechanism is crucial
for enhancing Reminisce’s performance. As shown by the green dotted lines, retrieval
accuracy improves after healing the exited branches. For instance, compared to zero-
shot MEM, exit healing boosts retrieval accuracy by 37.8% and 13.2% on average for
the COCO and FLICKR datasets, respectively.

After healing, Reminisce leverages the pre-exit mechanism to dynamically adjust
embedding granularity based on each sample’s characteristics. It can predictively exit
at the optimal layer to balance the trade-off between accuracy and throughput. As
shown in Figure 5a, compared to exiting all samples at a fixed layer, the data-aware
pre-exit mechanism improves retrieval accuracy by up to 19.8%. The higher coarse-
grained retrieval performance is crucial for final fine-grained retrieval.

With a default query candidate pool size of 10, retrieval accuracy using filtered
fine-grained embeddings is, on average, 35.5% higher than the previous coarse-grained
retrieval accuracy. This improvement is due to the fact that over 95% of the targets
retrievable by full-sized MEMs are successfully retrieved from the toplist of coarse-
grained embeddings. As a result, the embedding accuracy of Reminisce is comparable
to that of the full-sized MEM.

Impact of Query Latency Tolerance

Although query costs are negligible compared to embedding costs in the long
run—since queries occur less frequently than continuous daily embeddings—they are
immediately noticeable to users. Thus, we illustrate Reminisce’s performance under
different query latency tolerance in Figure 5b. During queries, the device holds the
entire quantized model in memory without layer-by-layer loading. Given the infre-
quency of queries, the temporary memory increase is acceptable. Query latency
comprises three components: query embedding, matching, and fine-grained embedding.
Baseline methods with memory encoders require only the first two steps, typically
taking around 1.2 seconds. Reminisce takes less than 1.5 seconds (the default latency
budget of our evaluation) to achieve acceptable query accuracy. As shown, if the sys-
tem tolerates higher query delays, performance can be further enhanced. For example,
on the FLICKR dataset, the relative retrieval accuracy of Reminisce improves from 92%
to 99% after refining an additional 10 candidates (≈0.2s).

Additionally, similar to web cookies [37], the query process can skip the complex
fine-grained embedding when repeated, improving efficiency in multi-query scenarios
where frequently queried items are retrieved faster. Once a local embedding is queried,
its embedding is permanently upgraded. Under these conditions, the system becomes
more efficient by skipping the fine-grained embedding process for frequently queried
items.

System Cost

Figure 6 shows the normalized energy consumption of Reminisce and various baselines.
Reminisce reduces energy consumption by up to 29× and 20× on average compared

8



to layerwise-executed baselines. Even compared to naive MEM without layerwise exe-
cution, Reminisce still achieves up to 7× energy savings on average. This is due to
Reminisce’s ability to determine the optimal number of layers for embedding and
offload embedding computation to the less frequent querying process.

We store the embeddings of the items in INT4 precision. Each embedding is 1024-
dimensional, resulting in a storage cost of approximately 5KB per item. Based on
the collected mobile application usage statistics, typical users encounter around 6000
images daily. Thus, the storage cost for image embeddings is roughly 29.3MB per day.
Annually, this amounts to about 10.4GB, which is comparable to the storage required
for a high-quality movie. In contrast, the current off-the-shelf solution Rewind [38]
consumes 14GB of storage per month on average, as officially reported [39].

Case Study: Twitter Meme Retrieval

To demonstrate the practicality of Reminisce in real-world scenarios, we conducted
a case study using daily surfing images and captions collected from Twitter memes.
End users filtered the data to ensure privacy, and a total of 805 figures were
collected to simulate 30 minutes of surfing. Our evaluation compares multiple meth-
ods—including Naive MEM without layer-wise execution, the MEM baseline, BranchyNet,
Fluid Batching, and our Reminisce —in terms of throughput, energy, memory, and
retrieval accuracy.

As shown in Figure 7, all baseline methods take over 80 minutes to complete the
retrieval task on a fully utilized CPU. Naive MEM incurs a large memory footprint by
loading the entire model at once, even with INT4 quantization. Its layer-wise execu-
tion counterpart (MEM baseline) reduces memory usage but decreases throughput due
to frequent layer-switching overhead. BranchyNet improves throughput by skipping
layers but at the expense of lower accuracy. In contrast, Reminisce completes the same
task in 28 minutes—achieving a 3× throughput improvement compared to even the
strong baseline Fluid Batching, due to our mobile-friendly optimizations.

Our approach reduces peak memory usage by 7× compared to Naive MEM, lowering
the footprint below 200MB. This includes a small buffer (under 50MB) for pipelined
execution and temporary activations—a reasonable tradeoff for performance gains.
Energy consumption is reduced by up to 4×, enabled by fewer layer computations
and more efficient batching. The system also achieves higher retrieval accuracy than
naive early-exit methods while maintaining an acceptable query latency of just 0.5
seconds. The additional memory overhead from batching parallelism is justified by the
substantial performance improvements.

These quantitative improvements—from faster processing and lower resource con-
sumption to robust retrieval performance—demonstrate that Reminisce is highly
practical for deployment in mobile scenarios, where computational efficiency and
low-latency requirements are critical.

User Study: Mobile Application Trace

To further validate Reminisce, we conducted a user study by collecting real user data
and simulating the system’s performance in embedding images generated during daily

9



mobile app usage. We do not account for charging time or the energy used by the
applications themselves to provide a more straightforward comparison between naive
MEM and Reminisce. As shown in Figure 8, without Reminisce, the naive MEM
system (in INT4 precision) would require more than 3 battery charges per day, and
over 20% of the images would remain unembedded due to time constraints. In contrast,
Reminisce reduces the number of required charges by 3×, allowing all daily generated
data to be embedded. This user study highlights Reminisce’s ability to efficiently
manage and embed large volumes of data, reducing the burden on battery life and
ensuring that the vast majority of daily usage data is preserved and embedded in
real-time.

Discussion

In this work, we develop Reminisce, an efficient on-device multimodal embedding sys-
tem to function as a memory augmenting service. Extensive experiments and case
studies demonstrate that Reminisce improves embedding throughput and reduces
energy consumption while maintaining high retrieval accuracy, making it practical for
modern mobile devices.

We offload the full-sized embedding cost to the query phase, which is infrequent
and carries precise retrieval information [2]. Only coarse-grained key information is
preserved using exited embedding models. This mirrors the human brain, which retains
key information in long-term memory and recalls details only when necessary [40].
Different from advanced sparsification or quantization optimizations, which provides
little to no benefit during inference due to the limited support of mobile hardware [41–
45], Reminisce can be seamlessly integrated into off-the-shelf mobile applications to
enhance user experience without requiring complex hardware modifications.

The ability of Reminisce to operate within mobile devices such as smartphones
and Raspberry Pi 4B, while maintaining high-quality embeddings, highlights its prac-
ticality for real-world applications. For instance, mobile users can now efficiently index
and recall multimedia content, fostering new use cases in personal assistants, health
tracking, etc.

A pivotal advantage of Reminisce lies in its on-device processing capability, which
eliminates the need to offload sensitive data to cloud services. This mitigates risks
associated with data breaches and unauthorized access, addressing a critical concern
in modern AI systems.

However, due to the extra memory overhead of batching parallelism, Reminisce has
a slightly higher peak memory footprint compared to the naive layer-wise baseline.
Detailed information is provided in the Supplementary Figure 3. Fortunately, it is
still within a practical range, e.g., 82M for embedding IMU information, which is
below the average Android application memory consumption of 100M as reported in
2020 [19, 46]. After 5 years, the mobile RAM capacity has increased significantly, with
up to 24GB available on high-end devices [47]. Less than 200MB of peaky memory
usage is affordable for most modern mobile devices.

This study provides the following takeaway messages:

10



• We prototype the first MEM-empowered mobile search service architecture.
Through user studies and pilot experiments, we identify the challenges of low
embedding throughput and high energy consumption.

• We introduce Reminisce, an efficient on-device multimodal embedding system that
addresses these challenges. Reminisce incorporates three techniques: preemptive exit
for dynamic execution scheduling, progressive model healing for cache optimization,
and speculative retrieval to correct premature exits.

• Extensive experiments demonstrate that Reminisce significantly improves through-
put and reduces energy consumption while maintaining search performance, making
it practical for mobile devices.

Methods

Reminisce Overview

In this work, we develop Reminisce, an efficient on-device multimodal embedding
system to address the challenges outlined above. Reminisce is designed to minimize
embedding energy costs and query latency while maximizing throughput and achieving
near state-of-the-art retrieval accuracy. Additionally, Reminisce shall integrate easily
into off-the-shelf mobile applications to enhance user experience without requiring
complex hardware modifications. Lastly, Reminisce aims to be both versatile and
transferable across a wide range of tasks. To achieve these goals, we leverage early
exit, a widely studied optimization technique, as the backbone of our system.

Early Exiting is the key building block. It terminates the computation of a deep
neural network at an intermediate layer based on prediction confidence. Typically,
a prediction head is introduced at the end of each layer to serve as a separate exit
branch, allowing samples to be correctly classified at the earliest possible layer.

We choose early exit as the backbone of Reminisce because it aligns with our design
principles: (1) Early exit is mobile hardware-friendly: it requires no sparsification
kernel compilation and integrates easily into existing multimodal embedding applica-
tions. Most mobile devices do not fully support advanced sparsification or quantization
optimizations, providing little to no benefit during inference [41–45]. (2) Early exit
preserves the raw structure of MEMs, maintaining their generalization capacity while
bypassing only downstream alignment. Additionally, early exit is caching-friendly, as
the top layers share the same bottom weights with the exited layers, allowing interme-
diate activations to be reused and reducing duplicated computations. Other techniques
like pruning and quantization cannot fully leverage the intermediate computation of
coarse-grained embeddings. This reduction is crucial for Reminisce, as it eliminates
redundant forward passes, accelerating both embedding and query phases. (3) Com-
pared to quantization, early exit offers a broader trade-off space. As shown in our
experiments (Supplementary Figure 4a), easy inputs require only one layer (just 3%
of total computation) to achieve accurate results. Such a large reduction in cost is not
possible with quantization.

As shown in Figure 3a, Reminisce provides a memory encoder for clients to build
coarse-grained embeddings offline, while the rest of the model functions as a live
encoder for precise online retrieval. (1) System developer preparation: Developers first

11



refine widely-used pretrained multimodal models to reduce the number of layers needed
for token prediction. The refined model is then deployed to mobile devices for offline
embedding. (2) Client offline embedding: Users employ part of the memory encoder to
build superficial embeddings for pre-exit prediction. After pre-exit, samples with the
same exits are batched and processed layer by layer through pipeline scheduling to
generate coarse-grained embeddings. (3) Client online query: During the query phase,
the query is embedded for matching. Likely candidates are filtered and refined from
the coarse-grained embeddings, which are then matched with the query embedding to
finalize retrieval.

In short, we offload the full-sized embedding cost to the query phase, which is
infrequent and carries precise retrieval information [2]. This mirrors the human brain,
which retains key information in long-term memory and recalls details only when
necessary [40]. Retrieval accuracy and latency are sacrificed within acceptable limits
to significantly reduce embedding costs, as demonstrated in Figure 4.

While early exit reduces computational load, its application in mobile MEMs intro-
duces several unique challenges: (1) Low parallelism: Early exit is incompatible with
batching, as all samples in a batch must exit before processing the next [26]. This
reduces throughput on mobile devices with limited computational resources. Without
batching, it is also harder to amortize loading costs, further slowing layer-wise infer-
ence. (2) Limited benefits: MEMs are not naturally designed for early prediction and
tend to distribute computation across all layers. For instance, ImageBind’s 32-layer
vision module requires an average of 21.4 layers to process data, limiting computa-
tion savings to 33.1%. MEMs need to reduce the layers required for token prediction
and minimize computational resources spent on hesitant or fluctuating predictions.
(3) Performance degradation: Despite thorough training of exit branches and predic-
tors, some samples may exit too early, leading to degraded search performance. This is
especially problematic in MEMs, where incorrect embeddings can disrupt the unified
embedding space, causing unbalanced distributions and inaccurate retrieval.

Design 1: Data-aware Pre-exit Predictor

Traditionally, most early-exit methods decide whether to exit at the end of each branch
computation [26, 48, 49]. This approach limits hardware acceleration and batching,
as exit points vary by data, leading to inconsistent workloads within batches and
memory fragmentation [26–28]. Although some predictive models for CNNs [27] predict
exit values in advance, they cannot scale to MEMs due to their convolution-specific
design. In this work, we propose a unified, lightweight early-exit predictor model for
all modalities, derived from intermediate data embeddings. The data-aware pre-exit
predictor preemptively decides the exit point for MEMs, enabling batch scheduling
for better parallelism and helping to amortize and hide loading time.

Different data contains varying amounts of information content (Supplementary
Figure 4). Unlike previous work that defines predictive models manually, we propose
using intermediate embeddings to predict the exit value without supervision. First,
we build the fine-grained embedding Fx for each data point x ∈ X as a proxy query
label. Next, we feed the input into the pre-trained MEM layer by layer, obtaining a
set of coarse-grained embeddings Cix at different granularities i ∈ range(layers). We

12



then measure the similarity between the fine-grained and coarse-grained embeddings.
When the similarity between Fx and Cix becomes the largest among Fx and CiX. query
retrieves Cix from CiX successfully. We mark it as a valid embedding exit. The interme-
diate embeddings are fed into the predictor model, and an MLP model is trained to
predict its exit value. This method outperforms fixed early-exit baselines, as shown in
Figure 5a.

As shown in Figure 3b, with the data-aware pre-exit predictor, we can predict the
exit value before embedding, enabling efficient batching of input data. In addition to
early-exit-specific batching, we propose pipelining the layer-by-layer encoding process,
where loading and embedding are conducted simultaneously.

Design 2: Progressive LoRA Healing

Original MEMs are not designed for early exit, as they tend to distribute computation
across all layers. As a result, most data requires many layers before exiting. We propose
a progressive LoRA approach to heal the model, reducing the number of layers needed
for each token.

Previous early-exit healing approaches [29] use the parameter-efficient fine-tuning
method, LoRA [18], to distill knowledge into lower layers, reducing the number of
layers required for each token. Naive LoRA tuning fine-tunes a separate LoRA suite for
each early-exit layer. For instance, with 32 exits, 32 LoRA suites are required. While
this ensures good performance, it has a drawback: the embedding from layer n cannot
be reused to compute the embedding for layer n + 1. As illustrated in Figure 3c, this
occurs because LoRA l1,...,nn for layer n is not the same as the first n layers of LoRA
l1,...,n+1
n+1 . Unlike standard embeddings, which complete all layers sequentially, early-

exit methods must check whether each layer is the final one. If layer n’s embedding is
incompatible with layer n + 1, the early-exit method must recompute the embedding
for layer n + 1 from scratch, negating many of the benefits of early exit.

On cloud servers, computation is not a major issue due to their high processing
power, and reducing model weights to alleviate I/O pressure is the primary concern.
However, for mobile devices with limited computational power, I/O pressure is less of
a concern since they typically serve only one user at a time.

Reminisce proposes a progressive LoRA healing method to address this issue, aim-
ing to use a single LoRA suite for all exits. To achieve this, we tune the LoRA layer
by layer. For each exit, we tune only the LoRA for the current exit while keeping
the previous exits’ LoRA fixed. Since the tunable parameters are fewer than the fixed
ones, the healing capacity is weaker compared to using separate LoRA suites, which
negatively impacts convergence (i.e., fine-grained embedding) performance (Supple-
mentary Figure 5b). To mitigate this, instead of tuning one LoRA layer at a time,
we progressively tune more LoRA layers at later exits. Similar to the window size in
convolutional layers, we define the number of tuned LoRA layers as the LoRA step.

To determine the optimal step during training, we use information from the pre-
dicted exit statistics. We set the training step at the pivot of the predicted exit
statistics, ensuring that most exits are healed with an appropriate step size (Supple-
mentary Figure 5a). This approach prioritizes smaller exits, aligning with the heuristic
that most data exits occur at earlier layers, which require more focused healing. At

13



later stages, larger steps enhance fine-grained performance during queries without
significantly affecting exit flexibility (Supplementary Figure 5b).

Design 3: Speculative Fine-grained Retrieval

With coarse-grained embeddings, we can filter out potential candidates. Further
fine-grained embeddings are then processed on these filtered candidates to complete
the final retrieval. However, using the default query embedding with a full-capacity
encoder does not achieve precise top-1 retrieval (Supplementary Figure 6a). This poor
performance stems from two unique challenges.

# Challenge 1: Reduced embedding capacity. Even if we modify the model to
predict early and align it with the full embedding, exiting early during inference
inevitably reduces accuracy compared to full-capacity embedding. Fortunately, while
coarse-grained embeddings may not achieve precise top-1 retrieval, they can filter out
the most likely candidates when expanding the retrieval range to top-10 as shown
in Supplementary Figure 6a. Thus, this challenge can be alleviated by refining the
coarse-grained embeddings filtered with query information.

# Challenge 2: Unbalanced embedding distribution. Different data exits at different
layers, leading to unbalanced embeddings in storage. Although each embedding is
fine-tuned to approximate the full embedding, embeddings from different exit layers
retain unique characteristics. Samples from similar exit layers tend to have similar
embedding distributions. As a result, a query embedding from a full-capacity encoder
cannot retrieve these embeddings precisely (Supplementary Figure 6).

Inspired by speculative decoding [50], a popular acceleration technique for lan-
guage models, we propose feeding the query embedding at different granularities to
achieve balanced filtering, as shown in Figure 3d. (1) Speculative filtering: The top
k candidates at each query granularity are preserved for the second round of filter-
ing. (2) Global verifying: The second round selects the final top k candidates from all
granularities. If a sample ID is duplicated, the candidate with the next highest score
is preserved. (3) Fine-grained correcting: Finally, the coarse-grained embeddings are
refined using the rest of the model to generate fine-grained embeddings, which are
then matched with the query for more precise retrieval.

Cache Reuse and Invalidation

As shown in Figure 3, coarse-grained embeddings can be reused for fine-grained embed-
dings. However, due to the down-sampling structure in the output head, it cannot be
reused directly. To address this, we store intermediate activations prior to each down-
sampling layer. This approach allows coarse-grained embeddings to be reused without
recomputation, reducing query latency by up to 70%. We also reuse superficial embed-
dings to lower the cost of data-aware coarse-grained embedding, improving embedding
throughput by up to 30%.

To efficiently manage intermediate activations and avoid resource waste from stale
data, we adopt a cache invalidation strategy as shown in Figure 9. During offline
embedding phase, intermediate activations from superficial embeddings are temporar-
ily stored in RAM to compute coarse-grained embeddings. After each batch, these

14



cached activations are sequentially invalidated from RAM. Coarse-grained intermedi-
ate activations are subsequently stored on disk, which has fewer constraints compared
to RAM (see Supplementary for details). At query phase, cached embeddings matching
the incoming query are loaded to compute fine-grained embeddings and are promptly
invalidated afterward.

Data Availability

The datasets involved in this study are all publicly available and can be accessed as
follows: The COCO dataset used in this study are available in the COCO database
under accession code https://cocodataset.org/#download. The FLICKR dataset used
in this study are available on Kaggle under accession code https://www.kaggle
.com/datasets/adityajn105/flickr8k. The CLOTHO dataset used in this study are
available on Zenodo under accession code https://zenodo. org/records/349 0684.
The HARSMART dataset used in this study are available in the UCI database
under accession code https://archive.ics.uci.edu/ml/machine-learning-databases/00
364/dataset u ci.zip. The collected Twitter meme dataset have been deposited on
Kaggle under accession code https://w ww.kaggle.com/datasets/penguin0211/twitter-
dataset-for-mo bile-search.

The collected traces in this study have been deposited on Kaggle under accession
code https://www.kaggle. com/data sets/dongqicai/mobile-trace-of-viewed-images.
All user data used in this study were anonymized prior to analysis. Personally identifi-
able information such as names and device identifiers were removed following standard
anonymization protocols. The resulting dataset contains only abstracted behavioral
features (e.g., app usage timestamps, total ImageView count, and image view through-
put per app) that cannot be linked back to individuals. All participants provided
informed consent prior to data collection. Each participant was informed about the
purpose of the study, the type of data collected, the anonymization procedure, and
their rights to withdraw at any time.

Furthermore, the open-sourced multimodal embedding models uti-
lized in this paper can be accessed via the following links: ImageBind
(https://dl.fbaipublicfiles.com/image bind/imagebind huge.pth) and CLIP-b/16
(https://hugging face.co/openai/clip-vit-base-patch16).

Code Availability

Codes for this work are available at [51]: https://github.com/caidongqi/
Mobile-Search-Engine/tree/pc. We also provide sufficient details in the methods
section and supplementary information for replicating experiments in this work.

References

[1] Mengwei Xu, Tiantu Xu, Yunxin Liu, and Felix Xiaozhu Lin. Video analytics
with zero-streaming cameras. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 459–472. USENIX Association, July 2021.

15

https://cocodataset.org/#download
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://zenodo.org/records/3490684
https://archive.ics.uci.edu/ml/machine-learning-databases/00364/dataset_uci.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00364/dataset_uci.zip
https://www.kaggle.com/datasets/penguin0211/twitter-dataset-for-mobile-search
https://www.kaggle.com/datasets/penguin0211/twitter-dataset-for-mobile-search
https://www.kaggle.com/datasets/dongqicai/mobile-trace-of-viewed-images
https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth
https://huggingface.co/openai/clip-vit-base-patch16
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc


[2] Michiel De Jong, Yury Zemlyanskiy, Nicholas FitzGerald, Joshua Ainslie, Sumit
Sanghai, Fei Sha, and William W Cohen. Pre-computed memory or on-the-fly
encoding? a hybrid approach to retrieval augmentation makes the most of your
compute. In International Conference on Machine Learning, pages 7329–7342.
PMLR, 2023.

[3] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative
models for open domain question answering. In Paola Merlo, Jorg Tiedemann,
and Reut Tsarfaty, editors, Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pages
874–880, Online, April 2021. Association for Computational Linguistics.

[4] Tianshi Wang, Fengling Li, Lei Zhu, Jingjing Li, Zheng Zhang, and Heng Tao
Shen. Cross-modal retrieval: A systematic review of methods and future
directions. Proceedings of the IEEE, 112(11):1716–1754, 2024.

[5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision. In
International conference on machine learning, pages 8748–8763. PMLR, 2021.

[6] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev
Alwala, Armand Joulin, and Ishan Misra. Imagebind: One embedding space to
bind them all. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 15180–15190, 2023.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[8] Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei Xu,
and Xuanzhe Liu. Fast on-device llm inference with npus. In Proceedings of the
30th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, ASPLOS ’25, page 445–462, New
York, NY, USA, 2025. Association for Computing Machinery.

[9] Xiang Li, Zhenyan Lu, Dongqi Cai, Xiao Ma, and Mengwei Xu. Large language
models on mobile devices: Measurements, analysis, and insights. In Proceedings
of the Workshop on Edge and Mobile Foundation Models, pages 1–6, 2024.

[10] Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang, Xin Yuan, Zeling Zhang,
Xiang Li, Dingge Zhang, Hanzi Mei, Xianqing Jia, et al. Mobile foundation
model as firmware. In Proceedings of the 30th Annual International Conference
on Mobile Computing and Networking, pages 279–295, 2024.

[11] Mengwei Xu, Dongqi Cai, Wangsong Yin, Shangguang Wang, Xin Jin, and
Xuanzhe Liu. Resource-efficient algorithms and systems of foundation models: A

16



survey. ACM Computing Surveys, 57(5):1–39, 2025.

[12] Eric Fassbender and Wolfgang Heiden. The virtual memory palace. Journal of
Computational Information Systems, 2(1):457–464, 2006.

[13] CNBC. Apple apologizes for listening to Siri conversations. https://www.cnbc.
com/2019/08/28/apple-apologizes-for-listening-to-siri-conversations.html, 2019.
Accessed: 2024-09-06.

[14] Nanyi Fei, Zhiwu Lu, Yizhao Gao, Guoxing Yang, Yuqi Huo, Jingyuan Wen,
Haoyu Lu, Ruihua Song, Xin Gao, Tao Xiang, et al. Towards artificial gen-
eral intelligence via a multimodal foundation model. Nature Communications,
13(1):3094, 2022.

[15] Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang,
Jianfeng Gao, et al. Multimodal foundation models: From specialists to general-
purpose assistants. Foundations and Trends® in Computer Graphics and Vision,
16(1-2):1–214, 2024.

[16] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models.
arXiv preprint arXiv:2405.09818, 2024.

[17] Kestutis Kveraga, Avniel S Ghuman, and Moshe Bar. Top-down predictions in
the cognitive brain. Brain and cognition, 65(2):145–168, 2007.

[18] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685, 2021.

[19] Android: Low memory killer daemon. https://source.android.com/docs/core/
perf/lmkd, 2022.

[20] Rongjie Yi, Xiang Li, and Mengwei Xu. mllm. https://github.com/
UbiquitousLearning/mllm, 2024.

[21] NCNN authors. NCNN. https://github.com/Tencent/ncnn, 2024.

[22] Android Developers. Accessibility Services. https://developer.android.com/
guide/topics/ui/accessibility/service, 2024. Accessed: 2024-09-06.

[23] Agus Kurniawan and Agus Kurniawan. Introduction to nvidia jetson nano. IoT
Projects with NVIDIA Jetson Nano: AI-Enabled Internet of Things Projects for
Beginners, pages 1–6, 2021.

[24] NVIDIA Corporation. Jetson Orin NX 16GB. https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-orin/, 2022. Accessed: 2024-09-
06.

17

https://www.cnbc.com/2019/08/28/apple-apologizes-for-listening-to-siri-conversations.html
https://www.cnbc.com/2019/08/28/apple-apologizes-for-listening-to-siri-conversations.html
https://source.android.com/docs/core/perf/lmkd
https://source.android.com/docs/core/perf/lmkd
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/Tencent/ncnn
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/


[25] Edge AI and Vision Alliance. Is the new nvidia jetson agx orin really a
game-changer? we benchmarked it. https://www.edge-ai-vision.com/2022/04/
is-the-new-nvidia-jetson-agx-orin-really-a-game-changer-we-benchmarked-it/,
2022. Accessed: 2024-09-06.

[26] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet:
Fast inference via early exiting from deep neural networks. In 2016 23rd inter-
national conference on pattern recognition (ICPR), pages 2464–2469. IEEE,
2016.

[27] Meiqi Wang, Jianqiao Mo, Jun Lin, Zhongfeng Wang, and Li Du. Dynexit: A
dynamic early-exit strategy for deep residual networks. In 2019 IEEE Inter-
national Workshop on Signal Processing Systems (SiPS), pages 178–183. IEEE,
2019.

[28] Xiangjie Li, Chenfei Lou, Yuchi Chen, Zhengping Zhu, Yingtao Shen, Yehan
Ma, and An Zou. Predictive exit: Prediction of fine-grained early exits for
computation-and energy-efficient inference. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 37, pages 8657–8665, 2023.

[29] Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Dan
Roberts. The unreasonable ineffectiveness of the deeper layers. In The Thirteenth
International Conference on Learning Representations, 2025.

[30] Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dan Su, Chenhui Chu,
and Dong Yu. Mm-llms: Recent advances in multimodal large language models.
arXiv preprint arXiv:2401.13601, 2024.

[31] Alexandros Kouris, Stylianos I Venieris, Stefanos Laskaridis, and Nicholas D Lane.
Fluid batching: Exit-aware preemptive serving of early-exit neural networks on
edge npus. arXiv preprint arXiv:2209.13443, 2022.

[32] Yuhao Du, Muhammad Aamir Masood, and Kenneth Joseph. Understanding
visual memes: An empirical analysis of text superimposed on memes shared on
twitter. In Proceedings of the International AAAI Conference on Web and Social
Media, volume 14, pages 153–164, 2020.

[33] NVIDIA Corporation. Jetson TX2. https://developer.nvidia.com/embedded/
jetson-tx2, 2017. Accessed: 2024-09-06.

[34] Raspberry Pi Foundation. Raspberry Pi 4 Model B. https://www.raspberrypi.
com/products/raspberry-pi-4-model-b/, 2019. Accessed: 2024-09-06.

[35] Xiaomi. Redmi turbo 3 specifications. https://www.mi.com/prod/redmi-turbo-3,
2023. Accessed: 2025-03-10.

18

https://www.edge-ai-vision.com/2022/04/is-the-new-nvidia-jetson-agx-orin-really-a-game-changer-we-benchmarked-it/
https://www.edge-ai-vision.com/2022/04/is-the-new-nvidia-jetson-agx-orin-really-a-game-changer-we-benchmarked-it/
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.mi.com/prod/redmi-turbo-3


[36] Dongqi Cai, Qipeng Wang, Yuanqiang Liu, Yunxin Liu, Shangguang Wang, and
Mengwei Xu. Towards ubiquitous learning: A first measurement of on-device
training performance. In Proceedings of the 5th International Workshop on
Embedded and Mobile Deep Learning, pages 31–36, 2021.

[37] Aaron Cahn, Scott Alfeld, Paul Barford, and Shanmugavelayutham Muthukrish-
nan. An empirical study of web cookies. In Proceedings of the 25th international
conference on world wide web, pages 891–901, 2016.

[38] Rewind AI. Rewind AI. https://www.rewind.ai, 2023. Accessed: 2024-09-06.

[39] Rewind. How does rewind compression work? https://help.rewind.ai/en/articles/
6706118-how-does-rewind-compression-work, 2022. Accessed: 2024-09-06.

[40] Alison K Banikowski and Teresa A Mehring. Strategies to enhance memory based
on brain-research. Focus on Exceptional Children, 32(2):1–16, 1999.

[41] Liqiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun
Liang. Sanger: A co-design framework for enabling sparse attention using recon-
figurable architecture. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 977–991, 2021.

[42] Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan
Yan, Hasan Genc, Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney,
et al. Full stack optimization of transformer inference: a survey. arXiv preprint
arXiv:2302.14017, 2023.

[43] Yang Sun, Wei Hu, Fang Liu, Min Jiang, FeiHu Huang, and Dian Xu. Spe-
former: An efficient hardware-software cooperative solution for sparse spectral
transformer. In 2022 IEEE 9th International Conference on Cyber Security and
Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge
Computing and Scalable Cloud (EdgeCom), pages 180–185. IEEE, 2022.

[44] Giorgos Armeniakos, Georgios Zervakis, Dimitrios Soudris, and Jörg Henkel.
Hardware approximate techniques for deep neural network accelerators: A survey.
ACM Computing Surveys, 55(4):1–36, 2022.

[45] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention
architecture with cascade token and head pruning. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 97–110.
IEEE, 2021.

[46] Niel Lebeck, Arvind Krishnamurthy, Henry M Levy, and Irene Zhang. End the
senseless killing: Improving memory management for mobile operating systems. In
2020 USENIX Annual Technical Conference (USENIX ATC 20), pages 873–887,
2020.

19

https://www.rewind.ai
https://help.rewind.ai/en/articles/6706118-how-does-rewind-compression-work
https://help.rewind.ai/en/articles/6706118-how-does-rewind-compression-work


[47] ASUS. ROG Phone 9 Pro. https://rog.asus.com/phones/rog-phone-9-pro/, 2024.
Accessed: 2024-12-20.

[48] Stefanos Laskaridis, Alexandros Kouris, and Nicholas D Lane. Adaptive inference
through early-exit networks: Design, challenges and directions. In Proceedings of
the 5th International Workshop on Embedded and Mobile Deep Learning, pages
1–6, 2021.

[49] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram
Wasti, Liangzhen Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, et al. Layer skip: Enabling early exit inference and self-speculative
decoding. arXiv preprint arXiv:2404.16710, 2024.

[50] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from trans-
formers via speculative decoding. In International Conference on Machine
Learning, pages 19274–19286. PMLR, 2023.

[51] Dongqi Cai, Shangguang Wang, Chen Peng, Zeling Zhang, Zhenyan Lu, Tao
Qi, Nicholas D. Lane, and Mengwei Xu. Ubiquitous memory augmentation via
mobile multimodal embedding system. GitHub Repository: https://github.com/
caidongqi/Mobile-Search-Engine/tree/pc, DOI: https://doi.org/10.5281/zenodo.
15379675, 2025.

[52] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages
740–755. Springer, 2014.

[53] Aditya Joshi. Flickr 8k Dataset for Image Captioning. https://www.kaggle.com/
datasets/adityajn105/flickr8k, 2020. Accessed: 2024-09-06.

[54] Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. Clotho: An audio
captioning dataset. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 736–740. IEEE, 2020.

[55] Erhan Bulbul, Aydin Cetin, and Ibrahim Alper Dogru. Human activity
recognition using smartphones. In 2018 2nd international symposium on mul-
tidisciplinary studies and innovative technologies (ismsit), pages 1–6. IEEE,
2018.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under
grant numbers 62425203 (S.W.) and 62032003 (S.W.); the Royal Academy of Engi-
neering via DANTE (N.D.L.); the European Research Council through the REDIAL

20

https://rog.asus.com/phones/rog-phone-9-pro/
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc
https://github.com/caidongqi/Mobile-Search-Engine/tree/pc
https://doi.org/10.5281/zenodo.15379675
https://doi.org/10.5281/zenodo.15379675
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://www.kaggle.com/datasets/adityajn105/flickr8k


Dataset Modality Size Metric
COCO [52] Text-Image 123,287 R@5
FLICKR [53] Text-Image 8,091 R@1
CLOTHO [54] Text-Audio 3,938 R@10

HARSMART [55] IMU 10,299 Acc.

Table 1 Description of the datasets used. The embedded modality is in bold. The performance
metric is obtained from the full-sized ImageBind finetuned for the downstream tasks.

project (N.D.L.); SPRIND under the Composite Learning Challenge (N.D.L.); the
Google Academic Research Award (N.D.L.); and the CCF-Sangfor “Yuanwang”
Research Fund (M.X.).

Author Contributions Statement

D.C. conceived the idea, designed the system, and led the implementation and evalu-
ation. S.W., M.X., and N.D.L. jointly supervised the project and provided high-level
guidance. C.P., Z.Z. contributed to system development and conducted comprehen-
sive experiments. Z.L. contributed to the quantization experiments. T.Q. supported
the revision experimental designs. All authors discussed the results and contributed
to writing and revising the manuscript.

Competing Interests Statement

The authors declare no competing interests.

21



figs/Figure 1.pdf

Fig. 1 MEM-based ubiquitous memory palace workflow and its instantiation on mobile devices.
MEM encodes multimodal data streams into a unified embedding space. These embeddings support
downstream tasks such as cross-modality search and retrieval-augmented generation. We instantiate
MEM-based ubiquitous memory palace on mobile devices with an emphasis on resource-efficient
offline embedding to optimize throughput, memory, and energy consumption.

22



figs/Figure 2.pdf

Fig. 2 Motivations and challenges of multimodal embedding on mobile devices. (a) Viewed-image
traces from one mobile user. (b) MEM inference speeds across different devices, compared to the
average image viewing rates of common mobile applications. (c) MEMs rapidly drain mobile batteries.
* indicates testing performed on the GPU of the Jetson ORIN.

23



figs/Figure 3.pdf

Fig. 3 Illustrations of the proposed Reminisce. (a) Detailed workflow of Reminisce with system
Designs1,2,3. (b) Illustration of Design 1: Data-aware pre-exit predictor and its advantages over tra-
ditional early-exit approaches. (c) Illustration of Design 2: Comparison of our progressive LoRA
approach to previous methods. (d) Illustration of Design 3: Coarse-grained embeddings are specula-
tively filtered, and top-ranking candidates are refined into fine-grained embeddings for final retrieval.

24



figs/Figure 4.pdf

Fig. 4 Illustrations of throughput versus accuracy across different methods and devices. (a) Jetson
Orin (INT8). (b) Jetson TX2 (INT8). (c) Raspberry Pi 4B (INT8). (d) 8Gen3 Smartphone (INT4).
For fairness, only layerwise baselines are included.

25



figs/Figure 5.pdf

Fig. 5 Performance analysis of Reminisce’s key designs and query latency impact on ORIN (INT8).
(a) Throughput-to-accuracy trade-off with and without Reminisce’s key Designs(1,2,3). PE refers to
pre-exited coarse-grained embeddings without fine-grained upgrading during the query phase. (b)
Performance under different query latency tolerance.

26



journal/revision/pc-plots/eval-energy.pdf

Fig. 6 Energy consumption of various methods
across four datasets. Our method consistently
exhibits the lowest energy usage, highlighting
its efficiency and low battery demand. Device:
ORIN (INT8).

journal/revision/pc-plots/eval-case-result-new.pdf

Fig. 7 Performance analysis during 30 minutes
of Twitter browsing. Our method uses the least
CPU time, consumes the least energy, requires
under 200MB of memory, and achieves high
retrieval accuracy.Device: 8GEN3 (INT4).

27



figs/Figure 8.pdf

Fig. 8 Energy and throughput comparison of embedding images viewed under real mobile traces.
(a) Naive MEM. (b) Ours. Device: 8GEN3 (INT4).

28



journal/revision/figs/cache-invalidation.pdf

Fig. 9 Invalidation strategy of Reminisce. During the offline embedding phase, intermediate acti-
vations from superficial embeddings are temporarily cached in RAM to compute coarse-grained
embeddings. After each batch, these activations are sequentially invalidated from RAM. During the
query phase, cached embeddings that match the incoming query are loaded to compute fine-grained
embeddings and are immediately invalidated afterward.

29


