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ABSTRACT
Transformer-based pre-trained models have revolutionized
NLP for superior performance and generality. Fine-tuning
pre-trained models for downstream tasks often requires pri-
vate data, for which federated learning is the de-facto ap-
proach (i.e., FedNLP). However, our measurements show that
FedNLP is prohibitively slow due to the large model sizes
and the resultant high network/computation cost. Towards
practical FedNLP, we identify as the key building blocks
adapters, small bottleneck modules inserted at a variety of
model layers. A key challenge is to properly configure the
depth and width of adapters, to which the training speed and
efficiency is highly sensitive. No silver-bullet configuration
exists: the optimal choice varies across downstream NLP
tasks, desired model accuracy, and mobile resources. To auto-
mate adapter configuration, we propose AdaFL1, a framework
that enhances the existing FedNLP with two novel designs.
First, AdaFL progressively upgrades the adapter configura-
tion throughout a training session; the principle is to quickly
learn shallow knowledge by only training fewer and smaller
adapters at the model’s top layers, and incrementally learn
deep knowledge by incorporating deeper and larger adapters.
Second, AdaFL continuously profiles future adapter configu-
rations by allocating participant devices to trial groups. Ex-
tensive experiments show that AdaFL can reduce FedNLP’s
model convergence delay to no more than several hours,
which is up to 155.5× faster compared to vanilla FedNLP and
48× faster compared to strong baselines.

1AdaFL is available at https://github.com/UbiquitousLearning/AdaFL.
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1 INTRODUCTION
With the recent rise of transformers and its variants [9, 20, 33,
52, 67, 74, 78, 91], modern NLP models show compelling use
cases on mobile devices. Examples include sentiment anal-
ysis, QA, and auto completion [42, 68, 76, 77, 92]. Through
careful engineering [9, 33, 52, 67, 74], inference with the NLP
models is demonstrated to be affordable on mobile devices.
Much success of modern NLP comes from its training

workflow as illustrated in Figure 1. (1) The pre-training phase
initializes a model on large text corpora. The training is self-
supervised and time-consuming, often taking hundreds if
not thousands of GPU days [14, 20]. Pre-training teaches the
model a language’s inherent structure, e.g. word distribution.
(2) The fine-tuning phase further adapts a pre-trained model
for a specific NLP task targeting a specific domain, e.g. to
classify sentiments (a task) of user emails (a domain) [20].
Fine-tuning is indispensable to modern NLP training; only
through it, the model maps the generic language understand-
ing to the outputs for rich NLP tasks.
FedNLP The two NLP training phases require data of dis-
parate natures. While pre-training is typically done on public
text corpora such as Wikipedia articles, fine-tuning requires
domain-specific samples such as user reviews, messages, or
emails. In mobile computing, these samples are generated by
end users continually, distributed over mobile devices, and
in many cases considered privacy sensitive.

https://github.com/UbiquitousLearning/AdaFL
https://doi.org/10.1145/3570361.3592505
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Figure 1: FedNLP and its role in modern NLP

To fine-tune models on private, distributed data, federated
learning is the de-facto approach [13, 51]. In a training ses-
sion targeting a specific NLP task and domain, a cloud service
selects multiple mobile devices to participate in training. A
device trains a local copy of the model with its private data
and sends the model updates to the cloud. Having aggregated
model updates from multiple devices, the cloud sends an up-
dated model to the devices. The training procedure repeats
many rounds (typically hundreds or thousands [54, 72, 87])
until the model accuracy reaches a desired level.
As such, this paper focuses on NLP model fine-tuning in

a federated setting, a core NLP process in mobile computing.
Such a process is often referred to as FedNLP [51], for which
§2.2 will present a detailed system model.
FedNLP overhead Despite the established FedNLP algo-
rithm [51], it was unclear if FedNLP is practical on today’s
mobile platforms. This paper’s first contribution is a thor-
ough characterization of FedNLP on a suite of benchmarks.
Our results in §2.3 show prohibitive overheads in twofold: (1)
Communication. In each round, participating devices upload
local gradients and then download the updated model, each
transferring hundreds ofMBs of data. (2)Mobile computation.
Even on an mobile device with GPU, its local computation
takes up to several hundred seconds per round. As a result,
a fine-tuning session can take as long as a few days. While
federated learning has been known for high overhead in
general, FedNLP is particularly expensive, primarily because
of the large sizes of transformer-based models and NLP task
complexity. As a comparison, FedNLP’s delay is at least one
order of magnitude higher than typical federated training
delays reported in literature.
Adapters and their configuration Our primary goal is
to reduce FedNLP’s training delay to reach a target accu-
racy, i.e. time to accuracy. We first identify adapters [34] as
key building blocks for NLP models. As small modules in-
jected between adjacent transformer layers, adapters become
the only tunable modules in a pre-trained model, freezing
the remaining model parameters (often >99%) which there-
fore incur no communication or compute overhead. While
adapters have been proposed for parameter-efficient learning

in general [34], we are the first to identify their significance
for FedNLP and investigate the system implications.
Although adapters significantly reduce tunable parame-

ters and hence the overhead, they do not automatically result
in optimal training delays. The challenge is a large config-
uration space of adapters: to which layer the adapters are
injected (depth) and the capacities of individual adapters
(width). The adapter configuration has a strong impact on
training overhead as well as the model convergence delay.
For instance, adding fixed-size adapters to all layers could
see up to 2.29× longer training delay as compared to adding
the same adapters to fewer hand-picked layers (§3.2). There
is no silver-bullet configuration that results in the fastest
convergence under each condition; rather, the optimal con-
figuration depends on the specific NLP tasks, the target ac-
curacy, and mobile resources such as network bandwidth
and local execution speed. The choice is also dynamic: even
within the same training session, the favorable configuration
drifts over time, depending on the model’s learning progress.
Picking a non-optimal configuration could slow down model
convergence by up to 4.7x and even underperform training
with no adapters at all.
Our system: AdaFL We therefore present a system called
AdaFL, which speeds up FedNLP with two key designs.

First, AdaFL augments the cloud controller with dynamic
adapter configuration. The key ideas are twofold. (1) Progres-
sive training. AdaFL launches a training session with only
small adapters inserted at the model’s top layers (i.e. close to
the model output), which essentially learns shallow knowl-
edge at a low training cost. Only as the model accuracy starts
to plateau, AdaFL adds bottom-layer adapters to training and
increases their widths, which learns deep knowledge at in-
creasingly higher training costs. This resonates with how hu-
mans learn knowledge in an incremental fashion andmodern
learning theories [11]. (2) Sideline trials. In addition to train-
ing the model with a current configuration, AdaFL probes
what the next configuration will be and when to switch to
it, for which AdaFL continuously profiles multiple candidate
configurations. To do so, from all the participating devices in
each round, AdaFL allocates multiple trial groups, requests
them to train the model with different adapter configura-
tions, and compares their learning progresses. If a trial group
shows a much higher convergence rate than others as well as
the current configuration under training, AdaFL will commit
to the configuration of this group. While configuration trial
distracts some devices from training with the current con-
figuration, it actually speeds up model convergence. This is
because the model convergence rate often sees diminishing
returns as the population of participant devices grows [54],
and our insight is that the surplus devices can better benefit
model convergence by profiling next configurations.
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Second, AdaFL enhances devices with cross-round activa-
tion cache. We exploit an observation: by design, a device
trains the same set of adapters in repeated runs until the
configuration switches; this set of adapters always spans
a continuous range of top layers while the bottom layers
remain frozen. Exploiting such an opportunity, for a given
configuration a device only executes a forward pass once
through the bottom layers, caches the output activations,
and reuses the cached output as the input to the top layers
which will undergo forward and backward passes. Caching
thus eschews training for the bottom layers, reducing the
total training cost by up to one order of magnitude.
Results We implement AdaFL atop FedNLP [51], a popu-
lar FL framework. We test the resultant implementation on
NVIDIA TX2 [1]/Nano [2] and RaspberryPi 4B [3], three
development boards with resources similar to mainstream
mobile devices. On a diverse set of 4 NLP datasets, AdaFL
reduces the training (model convergence) delay from 31.1–
124.3 hours to 0.2–4.5 hours (up to 155.5× reduction) as
against a vanilla fine-tuning approach. During a training
session, AdaFL reduces the network traffic by 126.7× and per-
device energy consumption by 18.4× on average. Compared
to more advanced methods such as model quantization [86],
layer freezing [23, 51], and their combination, AdaFL still
brings 4×–48× speedup. Our key designs contribute to the
results significantly: compared to a hand-picked configura-
tion which requires exhaustive offline search, AdaFL’s online
configurator reduces the model convergence delay by 4.6×;
AdaFL’s caching reduces the delay by 3.3×. AdaFL is also re-
source efficient: it reduces the network traffic by 126.7× and
per-device energy consumption by 18.4× on average.
Contributions We have made the following contributions.

• We carry out the first FedNLP measurement on actual em-
bedded hardware and demonstrate its slow convergence.
• We identify adapters as a building block for FedNLP and
the major challenge of adapter configuration.
• We design an FL framework AdaFL that automatically con-
figures adapters on the fly for fast training and optimizes
for mobile resource usage.
• We demonstrate AdaFL’s effectiveness through extensive
experiments. For the first time, AdaFLmakes FedNLP prac-
tical for commodity mobile devices.

2 BACKGROUND AND MOTIVATIONS
2.1 NLP Training Workflow
The modern NLP training typically consists of two stages:
pre-training and fine-tuning. During pre-training, a model is
trained on large text datasets, e.g., OSCAR corpora [6] with
more than 370 billion words. Those datasets are obtained

from public domains, e.g., Wikipedia, Twitter, etc. A pre-
trained language model captures the linguistic structure that
is ubiquitous and independent of downstream tasks. The pre-
training is usually performed in a self-supervisedmanner and
therefore requires no data labels [22]. It needs huge compute
resources (a mid/large GPU cluster) [14, 20], typically done
by big companies such as Google.
The fine-tuning adapts the pre-trained model to various,

concrete “downstream” language tasks such as text classifica-
tion, sequence tagging, text generation, and question answer-
ing. This often entails modifying the whole or only top layers
of the pre-trained model, and additional training passes to
adjust the model weights. Fine-tuning requires labeled sam-
ples for the given task, and is done in a supervised fashion.
The downstream tasks are abundant and keep emerging with
time, e.g., new domains, topics or data distributions.

The state-of-the-art NLPmodels that follow the pre-training
workflow are transformer-based, e.g., BERT [20] and its vari-
ants [9, 33, 52, 67, 74, 91]. Those models are composed of
many transformer blocks, where each block extensively uses
attention mechanisms [78]. We refer readers to recent sur-
veys [25, 26, 41] for how those models work internally. This
work specifically targets the fine-tuning stage of transformer-
based models for its pivotal role in modern NLP services.

2.2 Federated Learning
The fine-tuning is often performed on data generated by ap-
plications in user devices, e.g., input methods [89], emails [46,
73], and instant messaging [71]. Those data is private by na-
ture and cannot be collected arbitrarily to respect user’s
privacy concern and legal regulation like GDPR [79]. Fed-
erated learning (FL) [38] addresses this need by enabling
many devices to collaboratively train a shared model with-
out giving away their data. The key idea is to decentralize
the training over devices and only ask them to share model
updates instead of raw data. For this reason, the benchmark
for NLP training in a federated setting is emerging [51].
System model A pre-trained transformer-based language
model is given as input. After that, our task is to fine-tune the
model in a federated environment for an unbounded number
of unforeseen tasks may emerge. For each task, the fine-
tuning initiator (or developer) specifies how the last output
layer shall be revised (e.g., number of classes).

The fine-tuningmostly follows an FL common practice [13].
In each round, a cloud service (or aggregator) selects a fixed
number of mobile devices (or clients) as participants. The
model is fine-tuned on each client and the model updates will
be uploaded/aggregated on the cloud. The aggregation is of-
ten lightweight and the cloud resources can be flexibly scaled
out, so its time cost could be neglected. The fine-tuning speed
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is mainly bottlenecked by the on-device training and the net-
work transmission. The most likely network for FedNLP
is WiFi, which is highly unstable and constrained from a
hundred Kbps to a few Mbps [88]. Note that FL typically exe-
cutes in synchronous manner, so the more constrained hard-
ware/network often bottlenecks [64]. We do not consider the
device memory to be an obstacle because: (1) Modern mobile
devices with many GBs of DRAM can support fine-tuning
tasks for BERT (BS=8) according to our experiments (§6.3);
(2) Memory inefficiency can be compensated with acceptable
training overhead through advanced memory optimizations
such as rematerialization [15] and paging [56].

The key metric concerned in this work is time-to-accuracy,
a widely adopted metric [17] that indicates the training time
taken to reach a target accuracy. This is more practical and
comprehensive than a single “time to full convergence” be-
cause the accuracy improvement per time slice dramatically
decreases when the model approaches full convergence. For
instance, when FL fine-tuning on task AGNEWS, it takes only
5.2 hours to obtain 80% accuracy but another 25.9 hours to
90%. In our system model, the target accuracy could be pre-
set by the developer so the cloud service will train multiple
rounds using FL until the target is met.

We impose no constraint on client selection [44, 47, 49, 55,
82, 87, 94] or training data sampling [48, 82] strategies, mak-
ing it compatible with a mass of recent FL system literature.

2.3 Preliminary Measurements
We perform preliminary experiments that highlight the mo-
tivations to improve FedNLP fine-tuning performance and
provide implications for the design of AdaFL.

Observation-1: Transformer-based NLP models are
highly costly.As illustrated in Figure 2a, transformer-based
NLP models are much more expensive than the classic vision
models in general in consideration of parameter numbers
and computing complexity. BERT large has 330M trainable
weights and takes 250,000 PFLOPs to train, which is 6×/23×
higher than ResNet-152, respectively.

Observation-2: FedNLP task is extremely slow. Fig-
ure 2b shows the end-to-end training time towards full con-
vergence for typical NLP and CV tasks under federated set-
ting. As observed, it takes up to 210.74–359.7 hours to train
on SEMEVAL dataset, which is 1.53–10.53× longer than train-
ing ResNet-56 on CIFAR-100. Note that dataset SEMEVAL used
for classification tasks has 19 labels, while CIFAR-100 has
100 labels. It’s also worth mentioning that the above CV tasks
are launched from scratch while the NLP tasks are fine-tuned
atop a well pre-trained model.

Observation-3: network transmission dominates the
training delay on high-end devices. The training time
spent towards model convergence is dominated by two parts:

on-device training and network transmission. Figure 2c shows
such breakdown on three kinds of hardware (Jetson TX2 [1],
Jetson Nano [2], and Raspberry Pi 4B [3]) that span a wide
spectrum of hardware capacity and 1MB/s network band-
width (both uplink and downlink). It shows that for a high-
end edge device like Jetson TX2, the network transmission
delay is the major bottleneck (about 94.22%) of FedNLP tasks.
On a relatively wimpy device, both two parts contribute
nontrivially to the total training time.

Observation-4: existing techniques are inadequate
for FedNLP. A common approach to reducing the training
cost in NLP fine-tuning is freezing a few bottom transformer
blocks [23, 51]. It literally reduces the training computa-
tions by early stopping the backward propagation and the
network cost by only sending the trainable parameters. Fig-
ure 2d shows the tradeoffs between the convergence time
and training accuracy loss by tuning the number of frozen
transformer blocks on DistilBERT and ONTONOTES. Unfortu-
nately, we observed that the profits of such an approach are
modest. For instance, to guarantee an acceptable accuracy
loss (e.g., ≤1%), 2 out of 6 transformer layers can be frozen
at most and only 33.3% (2/6) network traffic can be saved.

Implications FedNLP is slow due to the considerable
amount of time spent on data transmission and local train-
ing. Simply freezing part of the model brings only modest
improvement. While cellular network capacity keeps up-
grading, their costly nature hinders adoption in federated
tasks [16]. To enable practical FedNLP with a tolerable con-
vergence delay (e.g., a few hours), the model structure and
training paradigm need to be re-architected.

3 DESIGN
3.1 Plugable Adapters
Transformer adapters For efficient FedNLP, we retrofit
adapters – a recently proposed technique for both CV and
NLP tasks to achieve parameter efficiency in machine learn-
ing [34]. The initial goal of adapters is to reduce the tunable
parameters especially in continuous learning [19] scenario
where unlimited number of new tasks might emerge. How-
ever, it has been seldomly used to tackle system challenges
like network cost and convergence speed. As far as we know,
AdaFL is the first to apply adapters to federated NLP tasks
and demonstrate its efficiency under a system context.
The key idea of adapter is to freeze the whole original

model but insert a few small modules into different locations
inside it. Figure 3 shows the architecture of our adapters and
how it’s applied to the transformer. The adapter approach
inserts small modules (adapters) between transformer layers.
The adapter layer generally uses a down-projection with
𝑾down ∈ R𝑛×𝑚 to project the input ℎ to a lower-dimensional
space specified by bottleneck dimension𝑚, followed by a
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Figure 2: The preliminary measurement results of FedNLP. (a) A glance at the complexity of NLP models and
traditional CNNs; (b) End-to-end convergence time of CV and NLP models under FL settings (CV1: “Densenet-
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time breakdown of FedNLP tasks on different hardware. Model: BERT; batch size: 4. (d) The performance of layer
freezing. Model: DistilBERT [67]; Dataset: ONTONOTES [60]; batch size: 4.
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nonlinear activation function 𝑓 (·), and a up-projection with
𝑾up ∈ R𝑚×𝑛 . These adapters are surrounded by a residual
connection, leading to a final form as:

𝒉← 𝒉 + 𝑓 (𝒉𝑾down )𝑾up .

We follow prior work [57], a state-of-the-art adapter vari-
ant to only insert one adapter module after the second sub-
layer, i.e., the feed-forward network "add & layer norm"
sublayer. The output of the adapter is then passed directly
into the next transformer layer.

The rationales behind adaptersWhy is adapter able to
achieve comparable accuracy with much fewer parameters
than freezing the bottom transformer layers without revising
the model structure? We reason it with two insights from
our experiments1 and related literature [57, 66].
First, adapters allow modifying a model’s hidden state

at a low cost. By keeping the whole original model as it
is, adapters can maximally preserve the knowledge learned
from the pre-training dataset. The pluggable adapters are
only used to encode task-specific representations in inter-
mediate layers of the shared model. While in fine-tuning
scenario, the downstream tasks mostly share low-level fea-
ture representation with the pre-training task, it’s still ben-
eficial to adjust the low and middle-level feature extractor.
Second, we observe that using adapters stabilizes the con-
vergence process, while fine-tuning on the full model easily
goes to overfitting. Though the overfitting can be remedied
by carefully tuning the hyper-parameters, it also requires
non-trivial efforts for each separated fine-tuning task.

1The experiments refer to Figure 2d, which shows layer freezing exhibits
moderated improvement.

Model Method Training Time Updated Paras.

BERT Full Fine-tuning 1.86 sec 110.01 x 106
Adapter 1.14 sec 0.61 x 106

DistilBERT Full Fine-tuning 0.91 sec 67 x 106
Adapter 0.56 sec 0.32 x 106

Table 1: Computation and communication cost
of inserting adapters into each transformer block
(width=32) and full-model tuning on Jetson TX2.

Network cost analysis The trainable parameter number
per adapter is 2𝑚𝑛+𝑛+𝑚. Clients only send those parameters
and last-layer classifier parameters after on-device training
to the aggregator. Therefore the network transmission per
round is reduced to𝐷×(2𝑚𝑛+𝑛+𝑚)+𝑛×#𝑙𝑎𝑏𝑒𝑙𝑠 , where𝐷 is
the total number of transformer blocks of the NLP model. As
shown in Table 1, compared to fine-tuning the whole BERT
model, the network saving could be more than 99%.

Compute cost analysis The computation FLOPs of each
adapter in forward pass is 2 ×𝑚 × 𝑛 × 𝑠𝑒𝑞𝑙𝑒𝑛 (normalized
to single data sample), where 𝑠𝑒𝑞𝑙𝑒𝑛 is the sequence length
(default 256 in BERT). This incurred overhead is trivial com-
pared to the original model complexity, e.g., less than 1%
on BERT. On the other hand, since all other parameters are
fixed during training, calculating the gradients of those fixed
weights can be avoided in backward propagation. Table 1
shows adapter brings around 40% training time reduction.

3.2 The Configuration Challenge
A unique challenge raised by adapters is its sensitivity to the
configurations (explained below). Different configurations re-
sult in a variety of convergence delays, up to 4.7× gap. Choos-
ing an “optimal” configuration towards fast convergence is
fundamentally challenging for the following reasons.
Large adapter configuration space There are two critical
parameters of adapters to be determined: depth and width.
(1) Similar to the idea of layer freezing, adapters are not
necessarily inserted into each transformer block. Reducing
the number of adapters inserted into the top blocks (namely
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Model Datasets
Optimal adapter configuration (depth, width)

towards different target accuracy

BERT

99% 95% 90% 80% 70%
20news (2,64) (2,32) (2,8) (2,8) (2,8)
agnews (3,16) (2,16) (2,8) (0,8) (0,8)
semeval (10,8) (6,8) (6,8) (2,8) (2,8)
ontonotes (12, 32) (12, 32) (10, 32) (0, 16) (0, 16)

Table 2: The optimal adapter configuration (i.e., best
time-to-accuracy) for different target accuracy (ratio
to the full convergence) and different datasets.

tuning depth) can effectively reduce the network cost and on-
device training time. (2) Apart from the depth, the bottleneck
size (tuning width), i.e., the target projection dimension of
input needs to be carefully set as well. A small width might
not suffice to encode the latent features for fine-tuning tasks
and thus incurs high accuracy degradation. Yet, a too wide
adapter incurs high resource costs and therefore slows down
the training (i.e., increased time to accuracy). Overall, the
candidate depth spans from 0 to the number of transformer
layers even if we only consider inserting adapters at top
K consecutive layers, i.e., 12 in BERT, and the valid widths
range from 8 to 64 according to our experiments2. That re-
sults in hundreds of different alternative configurations.
Another dimension of design space is that the configu-

ration can be switched across FL rounds during a training
session. §3.3 elaborates how such switching could be realized
with the knowledge learned by the old adapter configuration
well preserved. But within a round, clients better use the
same configuration to facilitate the model aggregation.
Decisions must be online Making a good decision offline
is difficult without pre-knowledge about the training dataset
– a common setup in fine-tuning scenarios. Even with the
same task, with the data distribution drifting over time, the
resultant model structure could differ tremendously [33, 47].
No silver bullet configuration A key observation we
made from extensive experiments is that there is no silver-
bullet configuration for FedNLP tasks. Rather, the optimal con-
figuration depends on many factors: the specific NLP tasks,
the target accuracy, and client resources such as network
bandwidth and local execution speed. Even with a given
pre-trained model, there are many factors that affect which
configuration shall be picked for the fastest convergence.
• Targeted accuracy. Within a training session, different tar-
get accuracy favors different configurations. As shown in
Figure 4 (a), to achieve the best accuracy possible, using an
adapter with depth 6 and width 16 is the best option. If 80%
relative accuracy is satisfactory, the adapter with depth 2
and width 8 is 2× faster than the previous configuration.

2The experiments refer to Table 2, which shows that the optimal adapter
width ranges from 8 to 64 on four datasets.
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Figure 4: Across different target accuracy and FedNLP
tasks, the optimal adapter configuration (depth,
width) varies. Tested with BERT and Jetson TX2.
• Targeted NLP tasks. Across different FedNLP tasks, the
optimal adapter configuration varies. As shown in Figure
4, using depth 2 and width 8 leads to fast convergence to
80% accuracy on 20NEWS [45]. However, on SEMEVAL [31],
the same configuration results in 10% lower convergence
accuracy as compared to a more complex configuration.
• Client resources. Local clients’ training speed and network
capacity also make a difference in adapter selection. This is
due to the disparate impacts of adapter depth/width on the
computation and communication reduction. For instance, a
larger tuning depth linearly amplifies the communication
and computation cost, while a larger tuning width linearly
increases the communication cost but only adds negligible
computation cost according to the analysis in §3.1.
Why prior work is inadequate A closely related tech-
nique is neural architecture search (NAS) [21], which au-
tomatically looks for the best model structures but with a
totally different design goal. Essentially, NAS sacrifices the
time for good training accuracy, e.g., days to train a single
model in a centralized manner [84]. Instead, we pursue fast
time-to-accuracy, which is a more practical and affordable
setting for FedNLP developers.

3.3 The Online Configurator
We build a configurator that automatically adjusts the tuning
depth and width throughout a training session. The goal is
fast model convergence: achieving the target model accuracy
in the shortest time. Our key ideas are twofold:
• Progressive training. The first key idea is, to begin with

a shallow tuning configuration (i.e., small depth and width)
to quickly boost the model accuracy. When it encounters
a “choke point” where more rounds of training no longer
provide enough accuracy profit, it “upgrades” to a more
complex configuration, i.e., either deeper or wider.
Such upgrading mechanism is inspired by curriculum

learning [11], a learning strategy that trains a model be-
ginning from easier data samples to harder ones. Instead of
altering the training samples, we propose to alter the model
structure. In the beginning, a simpler adapter configuration
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can learn fast. This is because, by focusing on fewer com-
pact trainable parameters closer to the model output, the
model can rapidly learn the coarse-grained domain-specific
knowledge for the downstream tasks, such as new class la-
bels [65]. For simple downstream tasks, fine-tuning with-
out re-learning deep features is enough to obtain satisfac-
tory model accuracy, e.g., depth 2 and width 64 for 20NEWS
dataset [45]. As the training proceeds, the model encounters
a “choke point” where the learning curve becomes gentle.
It demands deeper or wider adapters to learn new features.
The experiment results in Table 2 attests to our claim that a
higher target accuracy favors deeper and wider adapters.
• Identifying timing and direction to upgrade configuration

through sideline trials. The learning curve is fundamentally
challenging to be estimated or predicted ahead of time. How
can a system possibly know the timing and towhich direction
to upgrade? In this work, we propose an intuitive approach
based on the concept of sideline trials. Its key idea is to ask
extra participant clients to attempt different configurations,
and make a decision on whether and where to upgrade based
on the tested accuracy of different directions. In federated
settings, such “extra clients” are common because the client-
level parallelism of existing FL algorithms is notoriously
low. That is, limited by the learning theory [40], a small
number of clients (i.e., 5 for 20NEWS) is enough to saturate
the convergence performance (both accuracy and speed) and
allocating more clients gives a negligible return. As will be
shown in §6.2, using those extra clients for trial is much
more beneficial than asking them to participate in training.
Configurator algorithm indetail Algorithm 1 shows how
AdaFL progressively upgrades the configuration of adapters
during a training session. Unlike the traditional FL scheme
where only one global model with a fixed structure under-
goes the training, in AdaFL the cloud aggregator periodically
dispatches the global model to three groups of clients: one is
to train with the current configuration, one with a deeper
one and the other with a wider one (line 2–5, 23-26). After a
few rounds of parallel training (line 27, 19–22, 7–10, 18), the
aggregator server checks the accuracy of three global models
and re-starts the process on the model with the highest accu-
racy (line 12–15). Note that when the aggregator checks the
accuracy, the three global models undergo different numbers
of global rounds because the per-round training time and
network time depend on the adapter configuration (§3.1).
Therefore, the training speed of different tuning depth/width
is considered in this mechanism. Except that, the clients and
aggregator follow the common FL process in local training
(line 19–22) and model aggregation (line 8–9).

As described in Algorithm 1 (line 23–27), the models dis-
patched to different groups are with different model config-
urations. Group 𝑇𝑟𝑖𝑎𝑙0 inherits the learned adapter from the

Algorithm 1: Our Online Configurator
input :Target accuracy, 𝑎𝑐𝑐 ;

Trial interval, 𝑡𝑟𝑖𝑎𝑙_𝑖𝑛𝑡𝑣𝑙 ;
Start-up depth and width, 𝐷0 and𝑊0;
Step of depth and width, 𝑆𝑑 and 𝑆𝑤 .

output :Fine-tuned adapter weights, Θ𝑖 (i=1,2. . . ).

1 Function Cloud_controller():
2 𝑇𝑟𝑖𝑎𝑙0,𝑇𝑟𝑖𝑎𝑙1,𝑇𝑟𝑖𝑎𝑙2 ← selects 3𝑁 clients;
3 Iteration i=0;
4 𝑇𝑡𝑟𝑖𝑎𝑙=𝑇𝑛𝑜𝑤 ;
5 Dispatch(0); // Init model and trigger client training
6 while Eval() < 𝑎𝑐𝑐 do
7 i++;
8 Θ𝑘

𝑖
(𝑛) ← Receive updated adapters from𝑇𝑟𝑖𝑎𝑙𝑘 ;

9 Θ𝑘
𝑖
← Fedavg(Θ𝑘

𝑖
(𝑛));

10 𝑇𝑟𝑖𝑎𝑙0,𝑇𝑟𝑖𝑎𝑙1,𝑇𝑟𝑖𝑎𝑙2 ← selects 3𝑁 new clients;
11 if 𝑇𝑛𝑜𝑤 -𝑇𝑡𝑟𝑖𝑎𝑙 > 𝑡𝑟𝑖𝑎𝑙_𝑖𝑛𝑡𝑣𝑙 then
12 Compare accuracy under different Θ𝑘

𝑖
;

13 Θ𝑖 ←Winner track; 𝐷𝑖 ,𝑊𝑖 ←Winner setting;
14 𝑇𝑡𝑟𝑖𝑎𝑙=𝑇𝑛𝑜𝑤 ;
15 Dispatch(i) // Inherit winner track;
16 else
17 Send the aggregated model Θ𝑘

𝑖
to𝑇𝑟𝑖𝑎𝑙𝑘 .

18 Exit training.
19 Function Client_training(i,k):
20 Θ𝑘

𝑖
← Receive global adapter from cloud;

21 Θ𝑘
𝑖+1 (𝑛) ← Train and update local adapter;

22 Send updated adapter Θ𝑘
𝑖+1 (𝑛) to cloud.

23 Function Dispatch(i):
24 𝐹 (𝐷 ,𝑊 ): Initial/Inherit winner track Θ𝑖 with 𝐷 ,𝑊 .
25 Θ0

𝑖
← 𝐹 (𝐷𝑖 ,𝑊𝑖 ); Θ1

𝑖
← 𝐹 (𝐷𝑖 + 𝑆𝑑 ,𝑊𝑖 ); Θ2

𝑖
← 𝐹 (𝐷𝑖 ,𝑊𝑖 + 𝑆𝑤 );

26 Sends Θ0
𝑖
, Θ1

𝑖
, Θ2

𝑖
to𝑇𝑟𝑖𝑎𝑙0,𝑇𝑟𝑖𝑎𝑙1,𝑇𝑟𝑖𝑎𝑙2 seperately;

27 Parallel: Client_training(i,k).

previous winner track whereas𝑇𝑟𝑖𝑎𝑙1 and𝑇𝑟𝑖𝑎𝑙2 also inherit
the old adapters but add extra depth and width, respectively.
The step sizes of depth and width are pre-defined, e.g., 𝑆𝑑 = 1
and 𝑆𝑤 = 8 by default, respectively. The depths and widths
are both added on the fly. All newly added weights are nor-
malized with mean (0.0) and stddev (0.02). We experiment
with two ways to expand the adapter width: vertical and par-
allel stacking. Our micro experiments show that vertically
stacking will outperform parallel stacking with the same
amount of parameters. So we always use this method.

Integration with the existing FL frameworks AdaFL
is compatible with how existing FL frameworks manage
clients for training efficiency, a key system component hav-
ing received high research attention [44, 48, 49, 55, 82, 87, 94].
This is because the adapters and their configuration sched-
uler are intentionally designed to be decoupled from which
device or data will be involved in per-round training.

Fairness across trial groups AdaFL could make a fair
comparison across trial groups under client/data heterogene-
ity. AdaFL uses a two-stage client selection: it first follows
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the used FL method to select clients (might be prioritized and
biased), and then “randomly” partitions them into different
groups. It statistically ensures a fair comparison across trial
groups. The same notion applies to data heterogeneity as
well. Moreover, AdaFL re-selects clients/data for each group
per round. It compares performance across groups every N
round. AdaFL hence mitigates potential unfairness given a
large N (N>10), per the sampling theory.

User overhead with sideline trials The extra cost in-
curred by the sideline trials is amortized across different
clients and shall not impose higher impacts on user experi-
ence. In an end-to-end manner, using trial groups reduces the
elapsed training time towards convergence by discovering
better adapter configurations, thus reducing the total cost
accumulated on all clients as reported in §6.2. This design
makes AdaFL more scalable to available clients: using those
extra clients for trial is much more beneficial than asking
them to participate in training, either in convergence speed
or end-to-end resource cost.

4 FEDNLP ACTIVATION CACHE
Using adapter (§3.1) significantly reduces the network cost in
FedNLP tasks, exposing client-side computation as the next
major bottleneck for model convergence. Layer-freezing re-
duces the training computations by early-stopping the back-
ward propagation, but does not address the computation cost
at forward pass. For instance, with tuning depth as 2 of 12
transformer blocks in BERT, the forward computation takes
12/(12 + 2 ∗ 2) = 75% of the total computation, considering
that the backward propagation computation of each layer is
approximately 2 times of the forward counterpart [61].

Opportunities To reduce the client computation, we ex-
ploit two unique FedNLP opportunities: (i) Throughout a
training session, a device participates in many FL rounds.
Across rounds, the device executes local training on the same
set of local samples. In typical FL scenarios, it takes tens of
thousands of rounds till model convergence [13]. (ii) During
on-device training, the weights of the bottom transformer
blocks that do not have adapters inserted are fixed. Moreover,
those untouched transformer blocks remain the same across
FL rounds till AdaFL switches the tuning depth (§3.3). In our
experiments we observe a tuning depth upgrading interval
typically at hundreds to thousands of rounds.

The activation cache Our key idea is to leverage both
the static input and the fixed bottom layers so a client’s com-
puted activations can be reused across rounds. Assuming
the cloud aggregator selects a device to train with depth
𝑑𝑝𝑟𝑒𝑣 at round 𝑟𝑝𝑟𝑒𝑣 . During the training, the device also ex-
tracts the output of the last fixed bottom layer for each input
batch, i.e., the output of the (𝐷 − 𝑑𝑝𝑟𝑒𝑣)𝑡ℎ transformer layer
and stores them in local storage. For the next time device

𝑘 is selected, it first inquires the cloud aggregator that how
deep the model has been tuned since the last time it’s se-
lected, i.e., 𝑑 ′ = max(𝑑𝑝𝑟𝑒𝑣, 𝑑𝑝𝑟𝑒𝑣+1, . . . , 𝑑𝑛𝑜𝑤). If 𝑑 ′ > 𝑑𝑝𝑟𝑒𝑣 ,
it means the model has gone deeper. The transformer layers
between (𝐷 −𝑑 ′)𝑡ℎ and (𝐷 −𝑑𝑝𝑟𝑒𝑣)𝑡ℎ have been updated and
the cached activations of (𝐷 − 𝑑𝑝𝑟𝑒𝑣)𝑡ℎ transformer block
have “expired”. The output of the (𝐷 − 𝑑 ′)𝑡ℎ transformer
layer needs to be recomputed and recached. Otherwise, if
𝑑 ′ ≤ 𝑑𝑝𝑟𝑒𝑣 , the first 𝑑𝑠𝑝𝑙𝑖𝑡 = 𝐷 − 𝑑𝑝𝑟𝑒𝑣 transformer layers
are not touched since round 𝑟𝑝𝑟𝑒𝑣 . Therefore, it can directly
load the output of the (𝐷 − 𝑑𝑝𝑟𝑒𝑣)𝑡ℎ layer from the cache
and feed it into the training process without starting from
scratch. The above process repeats when the device partic-
ipates in training every time. The cache expiration incurs
re-computations of bottom transformer blocks and compro-
mises its profits. Fortunately, AdaFL’s design of online con-
figurator (§3.3) orchestrates with the caching technique by
monotonously upgrading the tuning depth.

To be noted, while cache mechanism has been widely ex-
ploited to accelerate on-device DNN inference [18, 27, 69],
we are the first to sense its opportunity in training tasks
(FedNLP in this case) that naturally involves repeated com-
putations on the same data.

Computation and storage cost analysis Using activa-
tion caching reduces the computations by 𝑑𝑠𝑝𝑙𝑖𝑡/𝐷 at the for-
ward pass. Yet it also takes extra storage, i.e., 𝑠𝑒𝑞𝑙𝑒𝑛 ×𝑛 ×𝐵𝑆
per batch, where 𝑛 is the transformer’s internal feature size
(default 768), and 𝐵𝑆 is the batch size (default 4). The cache is
reloaded from disk per minibatch, taking no more than tens
of ms on embedded flash and incurs less than 2% overhead.
The total cache size is also proportional to the number of
batches samples per client (typically dozens). Assuming 100
training samples, the storage cost is calculated to be around
100MB. Such cost is no more than 1% of the storage of a
modern mobile/embedded device, e.g., tens to hundreds of
GBs. The cache can be cleared once the FL process finishes.

Caching efficiency under millions of clients Our ac-
tivation caching might lose efficiency in the face of millions
of available clients, each of which is selected in one or very
few rounds. But we expect such scenarios as uncommon
from two folds. For one thing, an FL process typically needs
thousands of or even more rounds to reach convergence.
For another thing, in practice, FL employs rigorous client
selection strategies, e.g., a training-eligible device must be
charged, wifi-connected, and battery-sufficient. According
to Google [13], the utmost eligible client number is only 0.1%
(10K out of 10M) at midnight and could even be 10× smaller
at other times. Such observation is also confirmed by another
FL literature [90] that reports a large portion of devices will
never participate in the FL process. The advanced client se-
lection methods [44, 55, 82, 87, 94] that favor strong devices
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Device Processor Per-batch
Latency (s)

Jetson TX2 [1] 256-core NVIDIA Pascal™ GPU. 0.88
Jetson Nano [2] 128-core NVIDIA CUDA® GPU. 1.89

RPI 4B [3] Broadcom BCM2711B0 quad-core
A72 64-bit @ 1.5GHz CPU. 18.27

Table 3: Development boards used in experiments.

make the participant devices even more skewed and so those
devices will participate in many rounds of training.

5 IMPLEMENTATION AND SETUPS
Wehave fully implemented the AdaFL prototype atop FedNLP
[51] (the SOTA framework to evaluate FL methods on NLP
tasks) and Adapterhub [58] (a library that facilitates the
integration of pre-trained adapters for different tasks). As
prior work [13], we adopt the parameter server (PS) architec-
ture among the clients and central server. At the server side,
once job is submitted by the developer, the server initial-
izes the pluggable meta adapter to be trained (through the
API of Adapterhub) into the pre-trained model. The server
also splits the initialized meta adapter into three branches:
normal, wider and deeper. The wider branch will stack a
few meta adapters parallel to expand the bottleneck size of
adapter in single layer. The deeper branch will insert the
meta adapter into one more deeper layer. A client selector
will sample 3N clients from available devices and shuffle
them into 3 groups. We now employ a random client selec-
tor (default in most FL literature) but more advanced selec-
tion strategies [44, 47–49, 55, 82, 87, 94] can be plugged into
our implementation as well. Then, the server sends three
branches of adapters to three groups separately via MPI (in
standalone mode) or WLAN/Cellular (in distributed mode).
Once receiving the adapters, the clients insert the adapter
into their local pre-trained model. They fine-tune the model
with their own private data. The trained adapters will be col-
lected in the central server and aggregated through FedAvg
algorithm [54]. All clients run in synchronized mode [32].

Metrics We mainly report the time-to-accuracy metric.
We divide the dataset of each device for training (80%) and
testing (20%). For clarity, we pay attention to a few typi-
cal accuracy targets, e.g., 99%, 95%, 90% of the full conver-
gence accuracy achievable by the baseline that fine-tunes the
whole model. We refer to those accuracy numbers as relative
target accuracy. For example, the 100% relative target accu-
racy of BERT is 0.8 (accuracy) for 20NEWS; 0.9 (accuracy) for
AGNews; 0.8 (accuracy) for SEMEVAL; and 0.75 (token-F1) for
ONTONOTES. We also report the resource cost in an FL process,
including the total energy consumption on data transmitting
and training computation on each client; the total amount
of network traffic; and the peak memory usage.

HardwareAs prior FL literature [44, 47, 49, 51, 70], our ex-
periments are carried out in an emulation manner on a GPU

Task Dataset # of Clients Labels Non-IID Samples

TC 20NEWS [45] 100 20 / 18.8k
TC AGNEWS [93] 1,000 4 a=10 127.6k
TC SEMEVAL [31] 100 19 a=100 10.7k
ST ONTONOTES [60] 600 37 a=10 5.5k

Table 4: Datasets and settings used in experiments for
Text Classification and Sequence Tagging. “a” is a pa-
rameter that controls the datasets’ non-IID level [51].

server with 8x NVIDIA A40. The on-device training time is
obtained on 3 development boards with similar hardware
capacity to mainstream mobile devices, i.e., Jetson TX2 [1],
Jetson Nano [2], and Raspberry Pi 4B [3]. The numbers are
then plugged into the emulation framework to calculate the
elapsed time. The default network bandwidth between clients
and server is set to 1MB/s, a typical setting for mobile and
IoT devices [4, 24]. Note that while home/office WiFi down-
link could be faster, the uplink bandwidth is often bound
by the broadband backbone [37]. In §6.1, we will also quan-
tify the performance of AdaFL under various hardware and
bandwidth settings (100KB/s–10MB/s).

Models We use two representative models for FedNLP
tasks: BERT [20] (default) and its varient DistilBERT [67].
BERT and DistilBERT are composed of 12 and 6 transformer
blocks, respectively. DistilBERT leverages knowledge distil-
lation during the pre-training phase and reduces the size of a
BERT model by 40%, while retaining 97% of its language un-
derstanding capabilities and being 60% faster. We use BERT
for most of our experiments, as all BERT-based variants de-
rive from it. The pre-trained weights of both models are
downloaded directly from Hugging Face [85].

Tasks and datasets We evaluate AdaFL on 4 classic NLP
downstream datasets as shown in Table 4. We follow the
approach in [51] to build the non-IID datasets. (1) 20NEWS
(IID) [45] dataset is a collection of approximately 20,000 news-
group documents. (2) AGNEWS (non-IID) [93] is a collection
of 127.6K news articles gathered from more than 2,000 news
sources. (3) SEMEVAL (non-IID) [31] is a relation classifica-
tion datasets which assigns predefined relation labels to the
entity pairs that occur in texts. The above 3 datasets are used
for text classification (TC) [73] tasks, where the output is a
label in a fixed set of label set (e.g., political, sports, and en-
tertainment). (4) ONTONOTES (non-IID) [60] is a corpus where
sentences have annotations for the entity spans and types.
This dataset is for sequence tagging (ST) [8] task, where the
output is a sequence of tags.

Baselines We compare AdaFL to the following alterna-
tives. (1) Vanilla Fine-Tuning (FT) always fine-tunes the
whole model on each client. This is the default fine-tuning
methodology used in most NLP literature [20, 67]. (2) Fine-
Tuning-Quantized (FTQ) quantizes the model parameters
from FP32 to lower precision to reduce the network traffic
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Datasets 20NEWS AGNEWS SEMEVAL ONTONOTES
Relative Accuracy 99% 95% 90% 99% 95% 90% 99% 95% 90% 99% 95% 90%

FT 44.0 23.4 13.1 31.1 10.1 5.2 124.3 89.9 61.7 76.1 55.9 35.6
FTQ 12.7 6.8 3.8 9.1 2.6 1.7 32.0 23.1 15.9 21.2 15.5 9.9

LF𝑜𝑟𝑎𝑐𝑙𝑒 18.5 8.1 4.3 9.6 1.4 1.1 74.0 46.8 33.2 82.5 43.8 24.5
LFQ𝑜𝑟𝑎𝑐𝑙𝑒 5.2 2.5 1.1 1.6 0.3 0.2 16.8 11.0 7.7 23.9 12.9 7.2
AdaFL 1.3 0.4 0.1 0.2 0.03 0.02 2.3 1.1 0.6 4.5 2.4 1.3

Table 5: Elapsed training time taken to reach different relative target accuracy. NLP model: BERT. Unit: Hour.
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Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence significantly.

between clients and aggregator. Quantization is one of the
most widely adopted approaches to reduce the communica-
tion cost and speedup FL process. We use a state-of-the-art
quantization algorithm [86] in our FedNLP tasks. According
to the algorithm, we observe the NLPmodels are quantized to
INT4 or INT8 adaptively. (3) LayerFreeze-Oracle (LF𝑜𝑟𝑎𝑐𝑙𝑒 )
freezes a few transformer layers at bottom and only fine-
tunes the ones above. This is widely used to reduce the
fine-tuning cost [23, 51]. The number of freezed layers is
selected per task to achieve the best time-to-accuracy at
99% relative accuracy target. (4) LayerFreeze-Quantized-
Oracle (LFQ𝑜𝑟𝑎𝑐𝑙𝑒 ) combines the above quantization and
freezing techniques and selects the best setting for each task,
i.e., the number of freezed layers and the quantized data pre-
cision. To be noted, LF𝑜𝑟𝑎𝑐𝑙𝑒 and LFQ𝑜𝑟𝑎𝑐𝑙𝑒 are impractical in
reality as they require prior knowledge to obtain an oracle
system parameter. For a fair comparison, all baselines use
the same model aggregation algorithm (FedAvg [54]) and
client sampling (random), which are also the default setting
in prior FL literature [51].

Hyper-parameters Unless otherwise stated, AdaFL and
all baselines use the same set of hyper-parameters as FedNLP

[51] framework: mini-batch size as 4; local training iteration
as 1; learning rate as 0.1; max sequence length as 256 for
20NEWS and ONTONOTES, 64 for AGNEWS and SEMEVAL. For the
FL configurations at the server side, we follow the prior
FedNLP literature to select 15 participants by default for each
training round, i.e., 5 clients in each trial group of AdaFL.

6 EVALUATION
6.1 End-to-end Performance
AdaFL reduces model convergence delays significantly,
making FedNLP practical. Table 5 summarizes the conver-
gence time and Figure 5a illustrates the convergence process
under the default setting. To reach 99% relative target ac-
curacy, AdaFL is 33.8×, 155.5×, 54.0× and 16.9× faster than
FT on the four datasets, respectively. With a lower target
accuracy such as 90%, the speedup brought by AdaFL is even
more significant, i.e., 27.4×–260.0×. It takes at most one hour
for AdaFL to reach a usable accuracy.
More competitive baselines LF𝑂𝑟𝑎𝑐𝑙𝑒 and FTQ only bring

limited improvement over FT, i.e., 2.4×–3.9× speedup. Dozens
of hours are still needed for a single downstream task. LFQ𝑂𝑟𝑎𝑐𝑙𝑒
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Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

can benefit from both layer-freezing and quantization, there-
fore performing better than other baselines. Though, AdaFL
still beats LFQ𝑂𝑟𝑎𝑐𝑙𝑒 nontrivially, especially for reaching a
relatively lower target accuracy. For example, AdaFL is 12.8×
faster on SEMEVAL to reach 90% relative target accuracy.
This is because AdaFL employs an upgrading mechanism
on adapter configuration which enables fast boosting of the
training accuracy. Note that both LF𝑂𝑟𝑎𝑐𝑙𝑒 and LFQ𝑂𝑟𝑎𝑐𝑙𝑒 are
not practical methods as they use the “optimal” tuning depth
which is not likely to be known beforehand. If an improper
depth is chosen, their performance drastically deteriorates.

We also extend our experiments to DistilBERT [67], a dis-
tilled version of BERT, and illustrate the results in Figure
5b. It shows that AdaFL significantly outperforms the base-
lines on DistilBERT as well. For instance, AdaFL achieves
14.89×–73.42× speedup over FT to obtain the 99% relative
target accuracy. Interestingly, comparing DistilBert to BERT
under FT, we find the former achieves up to 7.7× speedup on
AGNEWS on Jetson TX2 since it is more lightweight in consid-
eration of both computation and communication. However,
this advantage does not hold for all circumstances. Com-
paring Figure 5b (d) with Figure 5a (d), we find that BERT
has comparable performance with DistilBERT on ONTONOTES.
It is likely attributed that, when the downstream task gets
harder, the loss of model’s representation capacity during
distilling incurs negative impacts. Such a difference will com-
pensate the large model size and computation complexity of
the vanilla BERT. Nevertheless, AdaFL performs consistently
on both models because it judiciously tunes the pluggable
adapters with different depths and widths.

AdaFL outperforms baselines in various network en-
vironments. Figure 6 reports the performance of AdaFL and
baselines under various network environment from 0.1MB/s
to 10MB/s, which cover the typical network capacity for
nowaday WiFi and cellular bandwidth. Our key observation
is that AdaFL consistently outperforms other baselines with
different network conditions, and the improvement is more
significant with lower network bandwidth. For instance, with
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 10𝑀𝐵/𝑠 , AdaFL reaches the 99% relative tar-
get accuracy 5.6× and 9.2× faster than FT on 20NEWS and
SEMEVAL, seperately. When the bandwidth goes down to
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Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

0.1MB/s, the improvement is as high as 137.7× and 112.5×,
respectively. The rationale behind this is that AdaFL brings
the most network transmission reduction by inserting tiny
adapter modules into the model. Such a micro transmission
package makes the communication process fast even with
very low network bandwidth. In reality, network fluctuation
is common [87]. AdaFL enables a stable fine-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 82] that will
drag the NLP fine-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with different device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8× and 79.2× faster than the VanilaFT on 20NEWS
and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8× and 7.0×, respectively. This is
because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,
AdaFL reaches target accuracy 5.03× and 3.25× faster than
the four baselines, respectively. Moreover, AdaFL also shows
improvement under heterogeneous settings, where the de-
vice capacity is assumed to be uniformly distributed between
Jetson TX2, Jetson Nano and RPI 4B. The profit is not as
significant as on high-end devices because the per-round
training is bottlenecked by the slower devices [64]. Exten-
sive research efforts have been invested to mitigate straggler
issue [44, 47, 49, 55, 82, 87, 94] and AdaFL is orthogonal to
those techniques.
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Figure 9: Time-to-accuracy throughout a training ses-
sion. AdaFL’s accuracy (red lines) always outperforms
those of fixed adapter configuration (208 in total, ag-
gregated as blue shades, for which blue dotted lines
show averages).

6.2 Significance of Key Designs
The benefits of AdaFL come from: the adapters (§3.1), the ac-
tivation cache (§4), the automatic adapter configuration and
trial-and-error clients (§3.3). We now quantify their benefits.

Adapter and caching. Figure 8 shows benefit of adapters
and caching. Naive use of adapters, e.g. inserting at all lay-
ers, may brings notable benefit, e.g., on Jetson TX2 and
benchmark AGNEWS, Vanilla-Adapter is 10.1× faster than
FT. However, the delays are still too high. On RPI 4B, naive
use of adapters slows down the model convergence as com-
pared to fine-tuning the whole model. By using one static,
oracle adapter configuration (Adapter𝑜𝑟𝑎𝑐𝑙𝑒 ), the time-to-
accuracy is reduced by up tp 23.0× compared to FT. Employ-
ing the activation cache technique (Adapter𝑜𝑟𝑎𝑐𝑙𝑒+Cache)
further brings 2.1×–3.3× speedup. In another micro exper-
iment, Figure 10 shows that, with activation caching, the
training time decreases almost linearly with fewer adapter
layers to be updated (𝐷 − 𝑑𝑠𝑝𝑙𝑖𝑡 ), and the improvement from
caching mechanism increases significantly as well.

Automatic configuration To demonstrate the impor-
tance of AdaFL’s upgrading mechanism on the adapter’s
tuning configuration, we exhaustively sweep through all
adapter configurations (depth 0–12, width 8,16,..,128, 208
configurations in total) of BERT on 20NEWS, and aggregate
their convergence curves as shaded areas shown in Figure 9.
The blue line (dotted) is the average time-to-accuracy of all
configurations while the red line (solid) is the curve of AdaFL.
Note that sweeping all configurations is very expensive: it
takes thousands of GPU hours to run the benchmark in a
subfigure. The results show that AdaFL almost outperforms
every configuration throughout a training session. This is
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Training targets 99% relative target accuracy.

owing to AdaFL switching among different configurations
that best suits the current training session. Typically, we
observe AdaFL uses 8–14 configurations per training session.

Investment of extra clients AdaFL uses more clients to
identify whether it shall upgrade to a more complex adapter
configuration through trial and error. We evaluate the perfor-
mance of AdaFL with different client numbers as compared
to VanillaFT. As show in Figure 11, VanillaFT achieves the
best performance with 6 participant clients per round. On
the other hand, using the extra clients for trial-and-error is
much more beneficial, i.e., better scalability to the available
clients.

6.3 Client Resource Cost
Network traffic. Figure 12 reports the total network traffic
incurred during fine-tuning to reach 99% relative target accu-
racy. It shows that AdaFL saves 126.7× on average and up to
220.7× (reducing from 2194.3 GB to 9.9 GB) network traffic
compared to the FT on dataset 20NEWS. Note that reducing
the network traffic not only speeds up the convergence, but
also mitigates the overhead on clients and the monetary cost
to FL developers, which is billed by the amount of data trans-
mitted on public cloud platforms, e.g., $0.01/GB on AWS [5].

Energy consumption. Figure 13 illustrates the average
energy consumed during FedNLP tasks on each device. It
shows that AdaFL saves the energy consumption remark-
ably, e.g., 1.3×–3.7× reduction compared to LFQ𝑂𝑟𝑎𝑐𝑙𝑒 and
3.1×–32.1× reduction compared to FT, respectively. Such
improvement comes from both the reduced network trans-
mission time and the on-device training computations.
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Memory footprint Figure 14 reports the peak memory
footprint when fine-tuning on BERT and DistilBERT with
different tuning depths. It shows that AdaFL nontrivially re-
duces the memory usage either with shallow or deep tuning
depth. The reasons are twofold. First, AdaFL only updates
the parameters of a few adapters, so the gradients of other
parameters are not calculated and the associated activations
do not need to be stored. Second, our activation caching
technique avoids storing the unneeded parameters.

7 RELATEDWORK
Fine-tuning (transfer learning) Inductive transfer learn-
ing has greatly advanced NLP research. Howard et al. pro-
pose ULMFiT [35], a universal transfer learning method
matching the performance of training from scratch. BERT [20]
was then introduced and becomes a standard pre-trained
model in many NLP downstream tasks for its superior per-
formance and generality. Numerous variants [9, 20, 33, 52, 67,
74, 78, 91] of BERT have since been designed. For instance,
Sun et al. explore the space of strategies for fine-tuning BERT
for text classification [73]. This work is motivated by those
work and specifically targets FedNLP scenario.
FedNLP is a key step towards the adoption of NLPmodels in
practice. However, there is very few literature investigating
its implications at system aspect. [51] is the first research
benchmark for FedNLP tasks and integrates representative
language datasets. AdaFL is built atop it and treats it as a
baseline. SEFL [80] is a FedNLP framework that achieves
data privacy without any trusted entities. [10] studies how
FedNLP can orchestrate with differential privacy. None of
above work addresses the high training cost of FedNLP.

Adapters Adapter is extensively studied to achieve param-
eter efficiency in continuous learning tasks. It was first in-
troduced for vision tasks [62]. The rationale is to encode
task-specific representations in intermediate layers while
preserving the knowledge learned from the pre-training
dataset [57]. Various adapter variants have been proposed to
tradeoff trainable parameter numbers and training accuracy
in NLP tasks [29, 39, 50, 59, 75]. Despite the popularity, the
implications of adapter in FedNLP tasks have not been well
examined. For the first time, we treat adapter as a building
block to address the training performance issue in FedNLP.
Optimizations for FL Due to the decentralized nature,
communication has been recognized as a major bottleneck
in FL tasks [13, 90]. Various optimizations [12, 48, 81, 83, 86]
have been proposed. Among them, model compression/quan-
tization [12, 86] is the mostly adopted and is directly com-
pared in this work. Apart from network transmission, data
and device heterogeneity [63] are also unique challenges
introduced in FL. To mitigate the heterogeneity of client de-
vices (therefore stragglers), Abdelmoniem et al. [7] ask each
client device to quantize their local model adaptively. Her-
mes [47] guides different mobile clients to find a small sub-
network through structured pruning for local training. Most
existing vision-based FL optimizations are CNN-specific [28,
47] and thus cannot apply to FedNLP. Some of them are
compatible with AdaFL, e.g., intelligent client selection and
data sampling [44, 47–49, 55, 82, 87, 94]. AdaFL instead takes
the first fundamental step towards practical FedNLP, and is
compatible with above techniques.

8 CONCLUSIONS
AdaFL is a federated learning framework for fast NLP model
fine-tuning. AdaFL borrows the wisdom from prior work
and uses adapter as the only trainable module in NLP model
to reduce the training cost. To identify the optimal adapter
configuration on the fly, AdaFL integrates a progressive train-
ing paradigm and trail-and-error profiling technique. AdaFL
shows superior training speedup over existing approaches
through our extensive experiments.
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fano Mazzocchi, Brendan McMahan, et al. Towards federated learning
at scale: System design. Proceedings of machine learning and systems,
1:374–388, 2019.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[15] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training
deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174,
2016.

[16] Xiaoyuan Cheng, Yukun Hu, and Liz Varga. 5g network deployment
and the associated energy consumption in the uk: A complex systems’
exploration. Technological Forecasting and Social Change, 180:121672,
2022.

[17] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian
Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei
Zaharia. Analysis of dawnbench, a time-to-accuracy machine learning
performance benchmark. ACM SIGOPS Operating Systems Review,
53(1):14–25, 2019.

[18] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. Clipper: A low-latency online
prediction serving system. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 613–627, 2017.

[19] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia,
Ales Leonardis, Greg Slabaugh, and Tinne Tuytelaars. A continual
learning survey: Defying forgetting in classification tasks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2021.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[21] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural archi-
tecture search: A survey. The Journal of Machine Learning Research,
20(1):1997–2017, 2019.

[22] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent.
Why does unsupervised pre-training help deep learning? In Proceed-
ings of the thirteenth international conference on artificial intelligence
and statistics, pages 201–208. JMLR Workshop and Conference Pro-
ceedings, 2010.

[23] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana
Rosing, and Rogerio Feris. Spottune: transfer learning through adaptive
fine-tuning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4805–4814, 2019.

[24] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. Mp-dash:
Adaptive video streaming over preference-aware multipath. In Pro-
ceedings of the 12th International on Conference on emerging Networking
EXperiments and Technologies, pages 129–143, 2016.

[25] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo,
Zhenhua Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. A
survey on vision transformer. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[26] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe
Wang. Transformer in transformer. Advances in Neural Information
Processing Systems, 34, 2021.

[27] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal,
Alec Wolman, and Arvind Krishnamurthy. Mcdnn: An approximation-
based execution framework for deep stream processing under resource
constraints. In Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, pages 123–136, 2016.

[28] Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group
knowledge transfer: Federated learning of large cnns at the edge. Ad-
vances in Neural Information Processing Systems, 33:14068–14080, 2020.

[29] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick,
and Graham Neubig. Towards a unified view of parameter-efficient
transfer learning. In ICML, 2022.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[31] Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Di-
armuid O Séaghdha, Sebastian Padó, Marco Pennacchiotti, Lorenza
Romano, and Stan Szpakowicz. Semeval-2010 task 8: Multi-way classi-
fication of semantic relations between pairs of nominals. arXiv preprint
arXiv:1911.10422, 2019.

[32] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,
Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. More
effective distributed ml via a stale synchronous parallel parameter
server. Advances in neural information processing systems, 26, 2013.

[33] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun
Liu. Dynabert: Dynamic bert with adaptive width and depth. Advances
in Neural Information Processing Systems, 33:9782–9793, 2020.

https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2018-11/state_of_wifi_vs_mobile_opensignal_201811.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2018-11/state_of_wifi_vs_mobile_opensignal_201811.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2018-11/state_of_wifi_vs_mobile_opensignal_201811.pdf
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/


Efficient Federated Learning for Modern NLP ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

[34] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone,
Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and
Sylvain Gelly. Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages 2790–2799. PMLR,
2019.

[35] Jeremy Howard and Sebastian Ruder. Universal language model fine-
tuning for text classification. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 328–339, 2018.

[36] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Densely connected convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4700–4708, 2017.

[37] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu,
Zhuoqing Mao, Subhabrata Sen, and Oliver Spatscheck. An in-depth
study of lte: effect of network protocol and application behavior on
performance. In Proceedings of the ACM SIGCOMM 2013 Conference,
volume 43, pages 363–374, 08 2013.

[38] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bel-
let, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, et al. Advances and
open problems in federated learning. Foundations and Trends® in
Machine Learning, 14(1–2):1–210, 2021.

[39] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder.
Compacter: Efficient low-rank hypercomplex adapter layers. Advances
in Neural Information Processing Systems, 34:1022–1035, 2021.

[40] Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa
Mudigere, and Mikhail Smelyanskiy. On large-batch training for deep
learning: Generalization gap and sharp minima. In 5th International
Conference on Learning Representations, ICLR 2017, 2017.

[41] Mayara Khadhraoui, Hatem Bellaaj, Mehdi Ben Ammar, Habib Hamam,
and Mohamed Jmaiel. Survey of bert-base models for scientific text
classification: Covid-19 case study. Applied Sciences, 12(6):2891, 2022.

[42] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code
prediction by feeding trees to transformers. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 150–162.
IEEE, 2021.

[43] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[44] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowd-
hury. Oort: Efficient federated learning via guided participant selection.
2021.

[45] Ken Lang. Newsweeder: Learning to filter netnews. In Machine
Learning Proceedings 1995, pages 331–339. Elsevier, 1995.

[46] Younghoo Lee, Joshua Saxe, and Richard Harang. Catbert: Context-
aware tiny bert for detecting social engineering emails. arXiv preprint
arXiv:2010.03484, 2020.

[47] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen.
Hermes: an efficient federated learning framework for heterogeneous
mobile clients. In Proceedings of the 27th Annual International Confer-
ence on Mobile Computing and Networking, pages 420–437, 2021.

[48] Anran Li, Lan Zhang, Juntao Tan, Yaxuan Qin, Junhao Wang, and
Xiang-Yang Li. Sample-level data selection for federated learning. In
IEEE INFOCOM 2021-IEEE Conference on Computer Communications,
pages 1–10. IEEE, 2021.

[49] Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. Pyramidfl: A
fine-grained client selection framework for efficient federated learning.

[50] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous
prompts for generation. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, 2021.

[51] Bill Yuchen Lin, Chaoyang He, Zihang Ze, Hulin Wang, Yufen Hua,
Christophe Dupuy, Rahul Gupta, Mahdi Soltanolkotabi, Xiang Ren,
and Salman Avestimehr. Fednlp: Benchmarking federated learning
methods for natural language processing tasks. In Findings of the
Association for Computational Linguistics: NAACL 2022, pages 157–175,
2022.

[52] Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng, and
Qi Ju. Fastbert: a self-distilling bert with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6035–6044, 2020.

[53] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning
face attributes in the wild. In Proceedings of the IEEE international
conference on computer vision, pages 3730–3738, 2015.

[54] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep net-
works from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282. PMLR, 2017.

[55] Takayuki Nishio and Ryo Yonetani. Client selection for federated
learning with heterogeneous resources in mobile edge. In ICC 2019-
2019 IEEE international conference on communications (ICC), pages 1–7.
IEEE, 2019.

[56] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,
Fan Yang, and Xuehai Qian. Capuchin: Tensor-based gpu memory
management for deep learning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 891–905, 2020.

[57] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho,
and Iryna Gurevych. Adapterfusion: Non-destructive task composition
for transfer learning. In EACL, 2021.

[58] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan
Vulić, Sebastian Ruder, Kyunghyun Cho, and Iryna Gurevych. Adapter-
hub: A framework for adapting transformers. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 46–54, 2020.

[59] Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. Mad-x:
An adapter-based framework for multi-task cross-lingual transfer. In
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7654–7673, 2020.

[60] Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng,
Anders Björkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong.
Towards robust linguistic analysis using ontonotes. In Proceedings
of the Seventeenth Conference on Computational Natural Language
Learning, pages 143–152, 2013.

[61] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A performance
model for deep neural networks. 2016.

[62] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning
multiple visual domains with residual adapters. Advances in neural
information processing systems, 30, 2017.

[63] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett,
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