
Resource-efficient Algorithms and Systems of Foundation

Models: A Survey

MENGWEI XU, Beijing University of Posts and Telecommunications, Beijing, China

DONGQI CAI, Beijing University of Posts and Telecommunications, Beijing, China

WANGSONG YIN, Peking University, Beijing, China

SHANGGUANG WANG, Beijing University of Posts and Telecommunications, Beijing, China

XIN JIN, Peking University, Beijing, China

XUANZHE LIU, Peking University, Beijing, China

Large foundation models, including large language models, vision transformers, diffusion, and large language

model based multimodal models, are revolutionizing the entire machine learning lifecycle, from training to

deployment. However, the substantial advancements in versatility and performance these models offer come

at a significant cost in terms of hardware resources. To support the growth of these large models in a scalable

and environmentally sustainable way, there has been a considerable focus on developing resource-efficient

strategies. This survey delves into the critical importance of such research, examining both algorithmic and

systemic aspects. It offers a comprehensive analysis and valuable insights gleaned from existing literature,

encompassing a broad array of topics from cutting-edge model architectures and training/serving algorithms

to practical system designs and implementations. The goal of this survey is to provide an overarching under-

standing of how current approaches are tackling the resource challenges posed by large foundation models

and to potentially inspire future breakthroughs in this field.

CCS Concepts: • Computing methodologies → Natural language processing; Computer vision;

Additional Key Words and Phrases: Resource efficiency, foundation models, algorithm and system

optimization

ACM Reference Format:

Mengwei Xu, Dongqi Cai, Wangsong Yin, Shangguang Wang, Xin Jin, and Xuanzhe Liu. 2025. Resource-

efficient Algorithms and Systems of Foundation Models: A Survey. ACM Comput. Surv. 57, 5, Article 110

(January 2025), 39 pages. https://doi.org/10.1145/3706418

M. Xu, D. Cai, and W. Yin contributed equally to this survey.

M. Xu was supported by NSFC 62102045.
Authors’ Contact Information: Mengwei Xu, Beijing University of Posts and Telecommunications, Beijing, Beijing, China;

e-mail: mwx@bupt.edu.cn; Dongqi Cai, Beijing University of Posts and Telecommunications, Beijing, China; e-mail: cdq@

bupt.edu.cn; Wangsong Yin, Peking University, Beijing, China; e-mail: yws@stu.pku.edu.cn; Shangguang Wang, Beijing

University of Posts and Telecommunications, Beijing, China; e-mail: sgwang@bupt.edu.cn; Xin Jin, Peking University,

Beijing, Beijing, China; e-mail: xinjinpku@pku.edu.cn; Xuanzhe Liu, Peking University, Beijing, Beijing, China; e-mail:

liuxuanzhe@pku.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 0360-0300/2025/01-ART110

https://doi.org/10.1145/3706418

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

HTTPS://ORCID.ORG/0000-0001-6271-6993
HTTPS://ORCID.ORG/0000-0003-2751-2500
HTTPS://ORCID.ORG/0009-0000-6242-4368
HTTPS://ORCID.ORG/0000-0001-7245-1298
HTTPS://ORCID.ORG/0000-0001-8741-5847
HTTPS://ORCID.ORG/0000-0002-7908-8484
https://doi.org/10.1145/3706418
mailto:permissions@acm.org
https://doi.org/10.1145/3706418
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706418&domain=pdf&date_stamp=2025-01-09


110:2 M. Xu et al.

1 Introduction

In the rapidly evolving field of artificial intelligence (AI), a paradigm shift is under way. We
are witnessing the transition from specialized, fragmented deep learning models to versatile, one-
size-fits-all foundation models (FMs). These advanced AI systems are capable of operating in an
open-world context, interacting with open vocabularies and image pixels for unseen AI tasks (i.e.,
zero-shot abilities). They are exemplified by (1) large language models (LLMs) such as GPTs [25]
that can ingest almost every NLP task in the form as a prompt; (2) vision transformers models

(ViTs) such as Masked Autoencoder (MAE) [94] that can handle various downstream vision
tasks; (3) latent diffusion models (LDMs) such as Stable Diffusion [218] that generate high-
quality images with arbitrary text-based prompts; (4) multimodal models such as CLIP [212] and
ImageBind [77] that map different modal data into the same latent space and are widely used
as backbone for cross-modality tasks like image retrieval/search and visual-question answering.
Such flexibility and generality mark a significant departure from the earlier era of AI, setting a
new standard for how AI interfaces with the world.

The success of these FMs is deeply rooted in their scalability: unlike their predecessors, these
models’ accuracy and generalization ability can continuously expand with more data or parame-
ters, without altering the underlying algorithms and architectures [279]. An impressive evidence
is the scaling law [117]: it describes how the performance of transformer-based models can pre-
dictably improve with more model size and data volume; until today, the scaling law stands still.
This scalability is not just a matter of model size; it extends to their ability to tackle increas-
ingly complex tasks, making them a cornerstone in the journey toward AGI (artificial general
intelligence).

However, the scalability comes at a cost of huge resource demand. FMs, by their very nature, are
resource-hungry for training and deployment. These resources encompass not only the computing
processors like GPUs and TPUs but also the memory, energy, and network bandwidth. For example,
the pre-training of LLaMa-2-70B takes 1.7× millions of GPU hours and consumes 2.5× 1012 joules
of energy. The estimated total emissions were 291 tons of CO2 equivalent. Beyond training, the data
processing, experimentation, and inference stages consume comparable or even more electricity
according to Meta AI [265]. A recent analysis [48] reveals that, to satisfy the continuation of the
current trends in AI capacity and adoption, NVIDIA needs to ship 1.5 million AI server units per
year by 2027. These servers, running at full capacity, would consume at least 85.4 terawatt-hours
of electricity annually—more than what many countries like New Zealand and Austria use in a
whole year. As FMs increase in size and complexity, their resource requirements escalate, posing
a significant challenge in their development and deployment.

The huge resource footprint of a large FM also hinders its democratization. Up to the end of
2023, there were only a few major players capable of training and deploying the state-of-the-art
FMs, who thereby have powerful control over the public and can potentially manipulate them
in a way they prefer. The models are served on clouds instead of devices as many lightweight
DNNs do [275, 302]; it makes data privacy preservation almost impossible. However, recently,
smartphone vendors have been boasting about running large FMs locally and some pioneering
engines were developed for on-device LLMs [6, 7, 76, 169], but the models demonstrated are limited
to relatively small scale (e.g., <10 billion) and have not yet seen real-world deployment.

Therefore, a significant amount of research has been dedicated to enhance the efficiency of these
FMs. These efforts span a wide range of approaches, from optimizing algorithms to system-level
innovations, focusing on reducing the resource footprint of these models without compromising
their performance. This survey aims to delve into these research efforts, exploring the diverse
strategies employed to make FMs more resource-efficient. We will examine advancements in algo-
rithmic efficiency, system optimizations, and the development of novel architectures that are less

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:3

resource-intensive. The survey also spans from clouds to edge and devices, where the large FMs
gain dramatic attention as well. Through this exploration, we aim to provide a comprehensive un-
derstanding of the current state and future directions of resource-efficient algorithms and systems
in the realm of FMs.

Scope and Rationales. First, we survey only algorithm and system innovations; we exclude a
huge body of work at hardware design. Second, the definition of resource in this survey is limited
to mainly physical ones, including computing, memory, storage, bandwidth, and so forth; we ex-
clude training data (labels) and privacy that can also be regarded as resources. Third, we mainly
survey papers published by top-tier CS conferences (i.e., those included in CSRankings). We also
manually pick related and potentially high-impact papers from arXiv. Fourth, we mainly survey
papers published after the year 2020, since the innovation of AI is going fast, with old knowledge
and methods being overturned frequently.

Organization. Section 2 overviews the classical FMs and their runtime cost. Section 3
investigates the architectural innovations that revise or replace the existing FM architectures.
Section 4 and Section 5 examine the algorithm-level and system-level literature toward more
resource-efficient FMs. Section 6 concludes the survey and presents potential future directions.

Comparison to Relevant Surveys. Concurrent to this work, there are a few (not yet peer-
reviewed) surveys about efficient LLMs, spanning from compression [316], algorithms [54], system-
algorithm [182, 246], and hardware [123]. As comparison, this work is the first comprehensive
survey toward resource-efficient FMs, including not only LLMs but also multimodal ones that
are equally important, such as diffusion models and ViTs. An extended version of this survey is
available elsewhere [277].

2 FM Overview

Figure 1 illustrates the evolutionary trace of popular FMs up to January 2024. In general, there are
three types of FMs: language-based, vision-based, and multimodal FMs.

Language FMs. Language FMs typically employ attention-based transformer architecture [244].
The process initiates by converting input words into high-dimensional vectors through an embed-
ding layer. During processing, attention mechanisms assign varying weights to different segments
of these input vectors. Following attention, layer normalization is applied to the output, ensuring
stabilization and standardization of the activations. Subsequently, each position-wise vector un-
dergoes transformation through a feedforward network (FFN), introducing non-linearity and
enabling the model to capture complex data patterns. Through multiple layers that incorporate
these components, the transformer learns hierarchical representations of the input data. In the
final stage, the output from the last transformer layer is directed into a linear layer, culminating
in the final prediction.

Vision FMs. In this article, we use the term vision FMs to refer to the FMs that only involve
the pure vision modality in their main pipeline. Vision FMs (e.g., SAM, seggpt [125, 254]) typically
employ ViT architecture [56], a transformer-based visual information processing block. As such,
efficient vision FMs (as well as those multimodal ones that rely on ViT) often benefit from the
efficient ViT designs. Given an input image, ViT first splits an image into fixed-size patches (i.e.,
tokens) by a convolutional embedding layer. For instance, a standard size RGB image input (i.e.,
3×224×224) will be split to 14×14 patches with 16×16 pixels. This embedding overhead is almost
negligible compared to the following compute-intensive transformer encoder (e.g., <5%). Besides,
an extra learnable classification token (CLS) is added to the token sequence to perform classifica-
tion. After that, positional embeddings are added into each token, and tokens are fed to a standard
transformer encoder. Depending on the specific downstream tasks, the hidden states generated by
the transformer encoder are finally fed into different heads, such as classification and detection.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:4 M. Xu et al.

Fig. 1. The evolutionary trace of FMs.

Multimodal FMs. Multimodal FMs are used in two specific goals: encoding input data in differ-
ent modalities into the same latent space, or generating output data in different modalities. The two
lines of research have convergence—for example, multimodal-to-multimodal (or even any-to-any)
generation. To ingest and align multimodal input data, existing model architectures like CLIP [212]
typically consist of multiple transformer encoders, with each modality having its own set of trans-
former encoders. Notably, these encoders are generally trained from scratch, utilizing paired data
with the aligned modalities and current modality. To generate multimodal data, FMs can either
(1) reuse the LLM to generate text or (2) diffusion models [218] to generate high-quality image
pixels. The diffusion module primarily consists of two components: an image encoder/decoder
and a denoising network. There are also variants of diffusion model that replace the convolu-
tion with the transformer (e.g., DiTs) [204], as well as FMs [292] that involve richer modalities
like IMU or audio. Yet such modalities are mainly embedded with only a dedicated embedding
layer and reuse the same transformer architecture. Thereby, we do not discuss these models in
isolation.

Applications of FMs. In real-world applications, language FMs like GPT-4 [196] have trans-
formed tasks such as content generation [101], code assistance [142], and natural language un-
derstanding across multiple industries. These advancements enable chatbots and personal agents
to better understand user queries and provide more meaningful responses. In the case of vision
FMs, models such as SAM [125] are widely applied in medical imaging, allowing healthcare profes-
sionals to accurately segment and analyze images with minimal manual intervention, significantly
improving diagnostic accuracy. Multimodal FMs, including CLIP [212] and Stable Diffusion [218],
are transforming the creative industries by enabling artists to generate artwork from simple text
prompts, thereby expanding creative possibilities while reducing manual effort.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:5

Fig. 2. Empirical computation and storage comparison across different FMs.

Cost Analysis of Transformer. Since most FMs are based on transformer architecture, we
briefly analyze the resource cost of it. The attention mechanism in large FMs faces significant
computational bottlenecks primarily due to its quadratic complexity. This complexity stems from
calculating attention scores for every pair of positions within the input sequence, posing chal-
lenges in managing long sequences and impacting both training and inference efficiency. Addi-
tionally, beyond the attention mechanism, the computation complexity of the FFN scales linearly
with input length but quadratically with the model’s dimension. An increase in the length of the
input sequence causes a substantial rise in computational demand, attributable to the quadratic
nature of the attention mechanism. In quantitative terms, the computation complexity of atten-
tion is O(T 2D), whereas that of the FFN is O(TD2), where T represents the sequence length and
D the hidden state dimension of the model [159]. The decoder’s attention mechanism, similar to
that in the encoder, also experiences quadratic scaling with token length. This aspect becomes
particularly significant in autoregressive decoding tasks, where each token’s generation depends
on the preceding ones, intensifying computational requirements. The implementation of a key-

value (KV) cache in the decoder can substantially mitigate computational costs by reusing key
and value vectors across various positions [132].

We empirically analyze the resource costs of different FMs by comparing their demands in terms
of FLOPs and storage, as shown in Figure 2. For language models such as BERT, GPT-2, and T5,
the embedding layer and LM head contribute significantly to storage. However, these components
require minimal computational FLOPs. The FFN layer is the most computationally intensive com-
ponent. Similar trends are observed in vision and speech models, such as Wav2Vec2 and ViTs,
where convolution is not dominant. Instead, MLP and self-attention layers consume the most re-
sources. In multimodal models like ImageBind, the IMG-Encoder is the most resource-demanding,
whereas other encoders require significantly fewer resources.

3 Resource-Efficient Architectures

3.1 Efficient Attention

As summarized in Figure 3, numerous efforts have been invested to mitigate the huge resource cost
of attention-based transformer architecture. The time and space complexity comparison is shown
in Table 1.

3.1.1 Sparse Attention. Motivated by graph sparsification, sparse attention aims to build a
sparse attention matrix. This approach aims to retain the empirical advantages of a fully qua-
dratic self-attention scheme while employing a reduced number of inner products. For instance,
Longformer [66], ETC [159], and BIGBIRD [294] decompose conventional attention into local win-
dowed attention and task-specific global attention, effectively reducing self-attention complexity
to linear. HEPOS [102] introduces head-wise positional strides, allowing each attention head to
concentrate on a specific subset of the input sequence. MATE [58] transforms attention into a
multi-view format, efficiently addressing either rows or columns in a table. TDANet [143] emulates

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:6 M. Xu et al.

Fig. 3. Illustrations of efficient attention architectures.

Table 1. Time and Space Complexity Comparison, Where T Represents Sequence Length and d
Represents Hidden Dimension

Model Time Space Model Time Space

Transformer [244] O(T 2d) O(T 2 +Td) AFT [298] O(T 2d) O(Td)
Reformer [126] O(T logTd) O(T logT +Td) Hyena [208] O(T logTd) O(Td)
SSM [82] O(T logTd) O(Td) Linear Transformers [118] O(Td2) O(Td + d2)

RetNet [229] O(Td) O(Td) RWKV [205] O(Td) O(d)

the human brain’s top-down attention mechanism to selectively focus on the most relevant infor-
mation, thereby enhancing speech separation efficiency.

3.1.2 Approximate Attention. Approximate attention mainly includes low-rank approximations
of the self-attention matrix and innovative reformulations of the self-attention. Linformer [250]
effectively decomposes the attention matrix into a low-rank matrix. It involves projecting the
length dimensions of keys and values into a lower-dimensional space, resulting in a significant
reduction in memory complexity. Reformer [126] utilizes locality-sensitive hashing to replace the
conventional dot-product attention. Katharopoulos et al. [118] introduced a kernel-based alterna-
tive to self-attention, leveraging the associative property of matrix multiplication for computing
self-attention weights. PolySketchFormer [116] employs polynomial functions and sketching tech-
niques to approximate softmax attention outputs. Mega [178], featuring a single-head gated atten-
tion mechanism, incorporates exponential moving average. Deformable Attention [268] proposes
a data-aware, deformable attention mechanism, contributing to improved performance within the
ViT architecture. CrossViT [35] introduces linear cross-attention, empowering the ViT architec-
ture to efficiently handle variably sized input tokens while mitigating computational costs.

3.1.3 Attention-Free Approaches. Despite the dominance of attention-based transformer archi-
tectures in large FMs, several works have put forth innovative architectures that hold the potential
to replace the traditional transformer model. For instance, Hyena [208] introduces an architecture
that interleaves implicitly parameterized long convolutions with data-controlled gating. This de-
sign provides a subquadratic alternative to attention in large-scale language models, thereby en-
hancing efficiency in processing long sequences. Another notable trend is the substitution of the
attention mechanism with state space models (SSMs), as explored in other works [44, 82, 197].
Mamba [81] seamlessly integrates selective SSMs into a streamlined neural network architecture,
eliminating attention and MLP blocks. This model achieves a notable 5× speed increase over tra-
ditional transformers and exhibits linear scaling with sequence length. Recurrent-style transform-
ers [26, 27] adopt a recurrent neural network (RNN)-based architecture, replacing attention

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:7

Fig. 4. Traditional and typical dynamic transformers.

with an RNN to achieve linear complexity. RWKV [205] combines the efficient parallelizable train-
ing of transformers with the effective inference capabilities of RNNs. RetNet [229] introduces an
architecture that replaces multi-head attention with a multi-scale retention mechanism. During
training, RetNet demonstrates 25% to 50% memory savings and a 7× acceleration compared to the
standard transformer.

3.2 Dynamic Neural Network

3.2.1 Mixture of Experts. Mixture-of-Experts (MoE), as illustrated in Figure 4(b), represents
an efficient and sparse approach for training and deploying large FMs with extensive parame-
ter sets. This model utilizes routed sparse parameters during inference. Switch Transformer [63]
introduces a switch routing algorithm, leading to models with improved efficiency and reduced
computational and communication costs. Switch Transformer demonstrates the scalability and ef-
fectiveness of the MoE framework by managing up to 1 trillion parameters, with as many as 2,048
experts. GLaM [57], a family of decoder-only language models, leverages a sparsely activated MoE
design. V-MoE [217] presents a sparse adaptation of the ViT, scaling to 15 billion parameters, and
achieves performance matching dense models while requiring less training time. LIMoE [188] rep-
resents the first multimodal model to incorporate sparse MoE, significantly outperforming CLIP
in various tasks. Mistral AI introduces Mistral,1 an MoE model comprising 8 experts, each with
7 billion parameters. This model outperforms the performance of the LLaMA2-70B model [238].
MoEfication [305] converts a model into its MoE variant with equivalent parameters. Sparse up-
cycling [127] initializes sparsely activated MoE from dense checkpoints, reducing about 50% of
the original dense pre-training costs. FFF [23] divides the feed-forward layer into separate leaves
instead of copying the entire feed-forward layer as an expert, being up to 220× faster than the origi-
nal feed-forward layer with about 5% accuracy loss. Section 5.1 will detail systematic optimizations
applied to MoE models.

3.2.2 Early Exiting. As illustrated in Figure 4(c), early-exiting optimization is a strategy that al-
lows a model to terminate its computational process prematurely when it attains high confidence
in the prediction or encounters resource constraints. He and Hofmann [93] investigate modifi-
cations to the standard transformer block, aiming for simpler yet efficient architectures without
sacrificing performance. M4 [292] introduces a multi-path task execution framework, enabling
elastic fine-tuning and execution of foundational model blocks for different training and inference

1https://mistral.ai/

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://mistral.ai/


110:8 M. Xu et al.

tasks. FREE [20] proposes a shallow-deep module that synchronizes the decoding of the current
token with previously processed early exit tokens. SkipDecode [49] is designed for batch inferenc-
ing and KV caching, overcoming previous limitations by establishing a unique exit point for each
token in a batch at every sequence position. PABEE [315] enhances the efficiency of pre-trained
language models by integrating internal classifiers at each layer. The inference process halts when
predictions stabilize for a set number of steps, facilitating quicker predictions with reduced layer
usage. DeeBERT [271] augments BERT’s inference efficiency by incorporating early exit points.
DeeBERT allows instances to terminate at intermediate layers based on confidence levels, effec-
tively reducing computational demands and accelerating inference. Bakhtiarnia et al. [22] propose
seven distinct architectural designs for early exit branches suitable for dynamic inference in ViT
backbones. LGViT [274] presents an early-exiting framework tailored for general ViTs, featuring
diverse exiting heads, such as local perception and global aggregation heads, to balance efficiency
and accuracy. This approach achieves competitive performance with an approximate 1.8× speedup.

3.3 Diffusion-Specific Optimization

Generating images through diffusion models typically involves an iterative process with numerous
denoising steps. Recent research has focused on accelerating the denoising process and reducing
the resource requirements during image generation, which fall into three main categories: (1) effi-
cient sampling, (2) diffusion in latent space, and (3) diffusion architecture variants.

3.3.1 Efficient Sampling. To enhance the denoising process of a diffusion model while main-
taining or improving sample quality, many efforts have been made to improve the sampling pro-
cess. These works emphasize resource and time efficiency in their architectures. Nichol and Dhari-
wal [192] made strides in enhancing the traditional DDPM by focusing on resource efficiency. Their
improved model not only competes in log-likelihoods but also enhances sample quality. This ef-
ficiency is achieved by learning the variances of the reverse diffusion process and employing a
hybrid training objective. This methodology requires fewer forward passes and shows improved
scalability in terms of model capacity and computational power. DDIM [225] represents a sig-
nificant improvement in time efficiency for diffusion models. By introducing a non-Markovian,
deterministic approach to sampling, DDIM accelerates the generation process, allowing for faster
sampling without compromising sample quality. PNDM [164] enhances the efficiency of DDPM
in generating high-quality samples. The approach treats the diffusion process as solving differen-
tial equations on manifolds, greatly accelerating the inference process. DPM-Solver [175] utilizes
a high-order solver that exploits the semi-linear structure of diffusion ODEs, facilitating fast and
high-quality sample generation. Remarkably, DPM-Solver achieves this with as few as 10 to 20
denoising steps, highlighting the latency efficiency in sample generation.

3.3.2 Diffusion in Latent Space. In traditional diffusion models, operations are usually per-
formed within the pixel space of images. However, this approach proves to be inefficient for
high-resolution images because of the considerable computational demands and significant
memory requirements. In response to these challenges, researchers proposed a shift toward
conducting diffusion processes in latent space through VAEs. This paradigm results in substantial
memory-efficient advancements, allowing for the generation of high-resolution images with
reduced computational resources. LDM [218], also known as Stable Diffusion, serves as a notable
example of memory-efficient image generation. By performing diffusion processes within a latent
space derived from pixel data through a VAE, LDM effectively tackles scalability issues present
in earlier diffusion models. LD-ZNet [207] leverages the memory-efficient properties of LDM
for image segmentation tasks. This approach capitalizes on the deep semantic understanding
inherent in LDM’s internal features, providing a nuanced bridge between real and AI-generated

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:9

Fig. 5. A summary of resource-efficient VIT variants.

imagery. SALAD [130] introduces a memory-efficient methodology for 3D shape generation and
manipulation with a cascaded diffusion model.

3.3.3 Diffusion Architecture Variants. Another method for enhancing diffusion models involves
the adoption of more efficient model architectures. This strategy focuses on refining the structural
framework of diffusion models to optimize their performance. SnapFusion [148] introduces an op-
timized text-to-image diffusion model for mobile devices, featuring a resource-efficient network
architecture. This model overcomes the computational and latency limitations of existing mod-
els through a redesigned network architecture and improved step distillation. It generates high-
quality 512×512 images in under 2 seconds with fewer denoising steps. ScaleCrafter [96] addresses
the generation of ultra-high-resolution images using pre-trained diffusion models with an innova-
tive and resource-efficient network design. ScaleCrafter incorporates techniques like “re-dilation,”
“dispersed convolution,” and “noise-damped classifier-free guidance” to dynamically adjust con-
volutional perception fields during inference. ERNIE-ViLG [65] introduces a novel text-to-image
diffusion model that integrates fine-grained textual and visual knowledge into a highly efficient
network architecture. With a mixture-of-denoising-experts mechanism and scaling up to 24 bil-
lion parameters, ERNIE-ViLG outperforms the existing models on MS-COCO with a remarkable
zero-shot FID-30k score of 6.75. Mobile diffusion [311] conducts a comprehensive examination
of model architecture design to minimize model size and FLOPs. The authors also optimize the
sampling steps, making one-step sampling compatible to downstream applications.

3.4 ViT-Specific Optimizations

As a transformer variant, ViT benefits from general optimizations aforementioned; yet, there also
exist ViT-specific architecture optimizations as summarized in Figure 5. LeViT [80] is a hybrid
neural network designed for efficient image classification. Its main backbone features a pyramid
architecture, progressively reducing the dimensionality of features while concurrently increasing
the number of attention heads. MobileViT [179] adheres to the idea of utilizing CNNs to construct
a more lightweight transformer architecture. Through the design of a convolution-like Mobile-
ViT block, the model achieves a lightweight and low-latency implementation, specifically tailored
for practical hardware platforms. EfficientFormer [153] designs a lightweight CNN-Transformer
hybrid architecture, achieving more efficient on-device inference. EfficientViT [28] introduces a
linear attention mechanism to alleviate the computational cost linked with the high overhead of

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:10 M. Xu et al.

softmax in non-linear attention. In the domain of super-resolution, EfficientViT achieves a speedup
of up to 6.4 × compared to Restormer [295]. FastViT [242] introduces a token mixing operator
that uses structural re-parameterization to lower the memory access cost by removing the skip-
connections in the network. EfficientViT [167] identifies that the speed of existing transformer
models is commonly bounded by memory-inefficient operations, especially the tensor reshaping
and element-wise functions in MHSA. In response, the authors reduce the MHSA by a sandwiched
structure. LightViT [103] presents several learning-based optimizations of pure convolution-free
ViT architecture. EdgeViT [199] enables attention-based vision models to compete with the best
lightweight CNNs in the tradeoff between accuracy and on-device efficiency.

4 Resource-Efficient Algorithms

This section focuses on resource-efficient large FMs techniques at the algorithm level. Compared
to traditional DNNs, large FMs exhibit new characteristics such as their huge parameter set and
autoregressive inference. This disparity has led to the emergence of numerous resource-efficient
algorithms, which are categorized based on the lifecycle of FMs: pre-training, fine-tuning, serving
algorithms, and model compression.

4.1 Pre-Training Algorithms

Pre-training for large FMs relies on a substantial amount of computation resources. For instance,
GPT-3-175B consumes 3.14×1023 FLOPs and LLaMA-70B takes 1.7×106 GPU hours. Consequently,
optimizing the utilization of computational resources is crucial for the efficient pre-training of FMs.
Resource-efficient algorithms can be categorized into training data deduction, neural architecture
search, progressive learning, and mixed precision training.

4.1.1 Training Data Quality Control. A portion of work focus on controlling the quality of train-
ing data. DataComp [73] proposes a novel paradigm of locking the model/hyperparameters and
refining the pre-training data. DFN [62] uses a proxy network as a modeling of the pre-training
dataset. It recognizes that a better performance of the proxy network does not necessarily trans-
late to the higher performance of the to-be-trained network. DataCompDR [243] of MobileCLIP
leverages knowledge transfer from an image captioning model and an ensemble of strong CLIP
encoders to improve the accuracy of efficient models.

4.1.2 Training Data Reduction. Pre-training for large FMs needs a dataset at the trillion scale,
exemplified by 0.3 trillion tokens for GPT-3-175B [25] and 2 trillion tokens for LLaMa-2-70B [238].
More data indicates more resource expenditure. Thereby, prior literature resorts to reduce vast
training data through two aspects: deduplicating text datasets and image patch removal.

Deduplicating text datasets [137] shows that training data has redundancy caused by near-
duplicate examples and long repetitive substrings. The reduction of repetitions can lead to fewer
training steps without compromising performance.

Image patch removal is achieved by either reducing the number of patch inputs to the model
or reorganizing image tokens based on modified model architectures. For instance, TRIPS [112]
employs a patch selection layer to reduce image patches. This layer computes attentive image to-
kens through text guidance, resulting in a 40% reduction in computation resources, compared
to previous pre-training vision-language models. MAEs [94] mask image patches in the pre-
training phrase, but the large masking ratio brings significant computation resource wastage.
MixMAE [162] introduces a method for mixing multiple images at the patch level, thereby avoid-
ing the need for introducing “[MASK]” symbols. COPA [113] introduces an auxiliary pre-training
task called patch-text alignment. This patch-level alignment strategy aims to decrease redundancy
in image patches. PatchDropout [170] introduces the concept of patch dropout to enhance both

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:11

computation and memory efficiency. This method involves the random sampling of a subset of
original image patches to effectively shorten the length of token sequences.

4.1.3 Progressive Learning. Progressive learning is a training strategy that begins by training
a small model and then gradually increases the model size, throughout the training process. This
approach optimizes computational resource usage by reusing the computations from the previ-
ous stage. Inspired by the insight that knowledge can be shared across models of different depths,
StackingBERT [78] introduces a progressive stacking algorithm. This algorithm cost-effectively
trains a large model with no performance degradation by sequentially stacking attention layers
from smaller models. CompoundGrow [83] identifies the similarity between progressive training
algorithms and NAS. Staged training [221] adopts a strategy where a small model is pre-trained
initially, and subsequently the depth and width of the model are increased, continuing the training
process. Knowledge inheritance [211] suggests employing existing pre-trained language models
as teacher models to provide guidance during the training of larger models. The supplementary
auxiliary supervision offered by the teacher model can effectively enhance the training speed of
the larger model. The progressive training algorithm in AutoProg [141] is for the ViT. AutoProg
automatically adjusts the growth schedule to achieve lossless performance and make training re-
source consumption minimal. LiGO [249] introduces small model parameters to initialize the large
model through a trainable parameter linear map. LiGO achieves this by factorizing the growing
transformation into a composition of linear operators at width and depth dimensions.

4.1.4 Mixed Precision Training. Mixed precision training often utilizes half-precision floating-
point data representation instead of single precision. This approach significantly reduces memory
requirements, approximately halving the storage space needed for weights, activations, and gra-
dients. Mesa [201] proposes the combination of activation compressed training [31] with mixed
precision training to further reduce the memory used by activations. The method quantifies acti-
vation based on the distribution of multi-head self-attention layers to minimize the approximation
error. GACT [168] introduces a dynamically adjusted compression ratio based on the importance
of each gradient.

4.2 Fine-Tuning Algorithms

Efficient fine-tuning algorithms are designed to reduce the workload to adapt a pre-trained FM
to downstream tasks. As summarized in Figure 6, these techniques can be categorized into three
groups: additive tuning, selective tuning, and re-parameter tuning.

4.2.1 Additive Tuning. Large FMs can achieve high performance with low costs by incorporat-
ing additional parameters and fine-tuning them for new tasks. In particular, this additive tuning
process in large FMs can be categorized into three main classes: adapter tuning, prompt tuning,
and prefix tuning.

Adapter tuning aims to reduce training costs by introducing adapter modules to specific lay-
ers (or all layers) of pre-trained large FMs. During tuning, the backbone of the pre-trained
model remains frozen, and adapter modules are utilized to acquire task-specific knowledge. Some
works [60, 200, 234] focus on designing adapters for multi-task or multimodal extensions. ADA [60]
and MetaTroll [234] concentrate on incrementally extending pre-trained transformers’ capabili-
ties across multiple tasks. This approach helps alleviate catastrophic forgetting during learning
while simultaneously reducing computational expenses. ST-Adapter [200] introduces built-in spa-
tiotemporal reasoning abilities, allowing pre-trained models to significantly reduce the number of
parameters that need to be updated in cross-modal tasks. HiWi [156] improves inference speed
by applying adapters to pre-trained parameters rather than hidden representations. AdaMix [255]

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:12 M. Xu et al.

Fig. 6. A summary of various fine-tuning algorithms.

designs a combined mechanism that merges the weights of different adapters into a single adapter
at each transformer layer. This innovation significantly reduces the additional storage cost intro-
duced by multiple adapters. MEFT [157] designs a method for inserting adapters into the LLM by
modifying the LLM to its reversible variant, reducing activation memory and thus improving the
memory efficiency of fine-tuning. Residual Adapters [236] utilizes personalized residual adapters
to address the issue of performance degradation in automatic speech recognition caused by non-
standard speech. AutoProg [141] achieves lossless acceleration by automatically increasing the
training overload on-the-fly. Such a procedure is done by progressively growth of subnets.

Prompt tuning involves designing a task-specific prompt for each task, with the aim of replacing
the traditional fine-tuning of pre-trained large FMs parameters. By tuning the input prompts in-
stead, this method significantly reduces the resources and time required for the fine-tuning. Some
works [17, 138, 239] focus on improving the efficient scalability of prompts in multi-task settings.
For example, PromptTuning [138], ATTEMPT [17], and BioInstruct [239] investigate how the uti-
lization of mixed soft prompts can efficiently transfer knowledge across different tasks. These
approaches help mitigate parameter update costs by reusing the frozen pre-trained large model.
Furthermore, some works [36, 284] focus on minimizing prompt fine-tuning costs for specific tasks.
For instance, DualPL [284] designs two prompts and separately captures the relevant knowledge
of both tasks. This approach addresses the high cost associated with collecting state labels for
slots and values in dialogue state tracking systems. In machine reading comprehension tasks,
MPrompt [36] introduces task-specific multi-level prompt tuning to enhance the understanding
of input semantics at different granularities while reducing the number of parameter updates.

Prefix tuning introduces a trainable, task-specific prefix part to each layer of large FMs. This
technique aims to reduce the tuning cost by limiting the updates to the parameters in this pre-
fix. Some works [160, 189, 245, 252, 308] focus on enhancing the performance of prefix tuning in
specific domains. For example, UAPT [252] and Prefix-diffusion [160] address the issue of limited
diversity in generating captions for images. These approaches extract image features from large
FMs and design prefixes to enhance performance while reducing additional overhead. DOP [308]
and DAPA [189] concentrate on domain-generalization problems in abstract summarization. These
approaches design prefixes for each source domain to improve the model’s generalization capabil-
ities. PIP [245] focuses on syntactic control in paraphrase generation and reduces training costs
by designing parsing-indicating prefixes.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:13

Fig. 7. LoRA and its optimization methods.

4.2.2 Selective Tuning. Selective tuning aims to maintain high performance on new tasks with
low training costs by freezing the majority of parameters in large FMs and selectively updating
only a small portion of the parameters. Some works focus on optimizing the performance of se-
lective tuning. For example, SAM [72] explores how the choice of tunable parameters affects tun-
ing. By proposing a second-order approximation method, it tunes fewer parameters to achieve
better model performance. SmartFRZ [146] focuses on improving the efficiency of layer freezing
by introducing an adaptive layer freezing technique based on different network structures. This
innovation enhances system accuracy and training speed. FiSH-DiP [46] explores the effective-
ness of tuning with limited data by introducing a sample-aware dynamic sparse tuning strategy.
This approach selectively tunes partial parameters using sample feedback to enhance the model’s
generalization in resource-constrained situations. Token Mixing [171] and VL-PET [100] enhance
fine-tuning efficiency of visual-language tasks by adjusting and selecting a subset of trainable
parameters.

4.2.3 Re-parameter Tuning. Re-parameter tuning adapts large FMs by targeting a significantly
smaller subspace than the original, expansive training space. This approach involves fine-tuning
low-rank matrix parameters, a technique that effectively reduces the overall training cost. The
majority of existing research centers on re-parameterization tuning through the implementa-
tion of the low-rank adapter design. For example, EfficientDM [95], QLoRA [51], PEQA [121],
QALoRA [278], and LoftQ [151] incorporate quantization techniques, building upon the founda-
tion of LoRA. GLoRA [32] enhances LoRA’s generality, improving model transferability, few-shot
capabilities, and domain generalization. PELA [87] derives inspiration from LoRA and devises
a low-rank approximation compression method. LongLoRA [38] extends the capabilities of
LoRA by incorporating context expansion through shift short attention. For ViT’s linear layers,
LBP-WHT [283] diminishes the computational costs of matrix multiplication by employing low-
rank backward propagation based on the Walsh-Hadamard transform. Additionally, DSEE [37]
investigates the application of sparse-aware low-rank updates on pre-trained model weights.
Dynamic-Pooling [191] mechanisms are designed to predict inference boundaries through
autoregressive prediction.

LoRA, as the most popular parameter-efficient fine-tuning method, still exhibits performance
gaps when compared to full fine-tuning. To address this, various methods have been developed
to enhance LoRA’s performance, as shown in Figure 7. Delta-LoRA [318] aims to bridge the per-
formance gap by updating the pre-trained weights through the product of low-rank matrices A
and B, thus adding trainable parameters without incurring additional memory overhead. How-
ever, PiSSA [180] identifies an issue where LoRA initializes low-rank matrices with Gaussian ran-
dom values and zeros, resulting in very small initial gradient values and slow convergence. Last,
DoRA [166] and LoRA+ [92] focus on enhancing the learning process itself to further improve
efficiency and effectiveness. DoRA decomposes the pre-trained weights into their magnitude and

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:14 M. Xu et al.

directional components, and fine-tunes the directional matrix. LoRA+ sets the unbalanced learning
rate for different blocks, accelerating convergence and improving fine-tuning performance.

4.3 Inference Algorithms

4.3.1 Opportunistic Decoding. The autoregressive mechanism significantly hinders the infer-
ence efficiency of large FMs. To address this, various approaches aim to replace autoregressive de-
coding with more efficient non-autoregressive techniques. Speculative decoding has been widely
acknowledged as an effective method to accelerate autoregressive decoding. It involves generating
sequences autoregressively with a cost-efficient small model, followed by parallel token verifica-
tion using a larger model. Leviathan et al. [139] report a 2 to 3× improvement in performance
using speculative decoding on the T5X model, whereas a concurrent study [34] demonstrates sim-
ilar speedups on a 70B Chinchilla model. SpecTr [230] further enhances speculative decoding by
increasing the number of candidate tokens and improving the draft selection process, resulting
in a 2.13× improvement in wall clock speed and an additional 1.37× speedup on standard bench-
marks. ProphetNet [280] introduces a sequence modeling architecture that predicts future tokens,
partially reducing the reliance on autoregression. In the draft stage, Draft & Verify [300] skips
certain intermediate layers, achieving a 1.73× speedup when tested on Llama-2. Medusa [29] of-
fers another non-autoregressive decoding architecture that requires no auxiliary model, predict-
ing multiple tokens by pre-training heads for different timesteps and verifying them concurrently.
Look-ahead decoding [70] accelerates inference in large FMs without relying on a draft model or
data store, reducing decoding steps in proportion to log(FLOPs). Additionally, speculative decod-
ing is the foundation for various inference systems, such as SpecInfer [183], which uses multiple
draft models in the cloud, and LLMCad [272], deployed at the edge.

4.3.2 Input Filtering and Compression. This method includes directly filtering raw data (i.e.,
prompt filtering) or filtering hidden activations of FMs (i.e., token pruning).

Prompt Compression. Computations can be effectively reduced by compressing the prompt
to the model. LLMLingua [114] introduces a prompt compression approach from a coarse-to-fine
perspective. Wingate et al. [262] investigate the feasibility, applicability, and potential of com-
pressing natural language for large FMs while preserving semantics. EntropyRank [240] presents
an unsupervised approach for extracting keywords and keyphrases from textual data. This method
leverages a pre-trained language large FM and incorporates Shannon’s information maximiza-
tion. LLMZip [241] employs LLaMA-7B for compressing natural language. Experimental results
demonstrate that LLMZip outperforms cutting-edge text compression methods, including BSC,
ZPAQ, and paq8h. AutoCompressors [40] utilizes large FMs to compress natural language into
compact summary vectors. These vectors can then serve as soft prompts for large FM usage.
ICAE [75] utilizes the capabilities of large FMs to condense an extensive context into concise mem-
ory slots. These memory slots are directly adaptable by the large FMs for diverse purposes. Nugget
2D [210] introduces a prompt compression method specifically designed to handle long contexts.
CoT-Max [104] is a context pruner, aiming to enhance the Chain-of-Thought (CoT) ability of
large FMs.

Token Pruning. Research has also explored the pruning of input sequences for transform-
ers, often involving the incremental removal of less important tokens during inference. PoWER-
BERT [79] proposes the direct learning of token pruning configurations. Length-Adaptive Trans-
former [120] extends this idea by introducing LengthDrop, a technique that entails training
the model with various token pruning configurations, followed by an evolutionary search. TR-
BERT [287] formulates token pruning as a multi-step token selection problem and addresses it
through reinforcement learning. DynamicViT [214] hierarchically prunes redundant tokens based

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:15

on their importance scores. AdaViT [181] and A-Vit [290] employ adaptive token reduction mech-
anisms and select different tokens for different images. AdaViT dynamically determines the usage
of patches, self-attention heads, and transformer blocks based on the input. A-ViT discards tokens
in ViTs during inference, adapting the token retention based on the complexity of the input im-
ages. SPViT [129] devises an adaptive instance-wise token selector and introduces a soft pruning
technique. PuMer [30] combines similar textual and visual tokens during inference for large-scale
vision-language models.

4.3.3 KV Cache. Optimizing memory for the KV cache is a crucial aspect of the autoregressive
decoder-based model inference process.

Memory-Efficient Sparse Attention. An alternative approach involves leveraging sparse at-
tention. However, it is noteworthy that most sparse attention designs, which primarily target the
reduction of computational complexity [24, 294], do not necessarily lead to a reduction in KV
cache memory consumption. This is because achieving a reduced memory footprint for the KV
cache necessitates a more stringent sparsity pattern. Specifically, tokens that are sparsified should
not be dynamically accessed in subsequent steps. To address this, H2O [306] introduces a KV cache
eviction strategy designed for optimal memory efficiency. This strategy employs attention scores
to identify and select the least important KV cache tokens in the current state for eviction. When
compared to robust baselines, H2O demonstrates the capability to reduce latency by up to 1.9×
and increase throughput by 29×. Dynamic Context Pruning [16] learns a memory-efficient KV
cache eviction strategy during the pre-training phase. This approach has demonstrated the ability
to achieve up to a 2× increase in inference throughput and even greater memory savings. Scis-
sorhands [172] utilizes an innovative compact KV cache and results in a notable reduction in KV
cache inference memory usage, achieving up to a 5× reduction while maintaining model quality.
By employing a landmark token to demarcate a token block, Landmark Attention [187] optimizes
KV cache storage. This approach enables the storage of most KV caches in a slower but larger ca-
pacity memory, resulting in reduced memory requirements without compromising performance.

4.3.4 Long Context. To effectively process long sequences, transformers need to adapt their
positional encoding to enhance their capability to capture long-range information. Due to the
quadratic computational cost associated with attention mechanisms, various resource-efficient op-
timizations have been proposed to handle long inputs. LM-Infinite [89] introduces a Λ-shaped at-
tention mechanism to handle long contexts efficiently. Characterized by computational efficiency
with O(n) time and space complexity, LM-Infinite consistently demonstrates fluency and quality
in text generation for sequences as long as 128k tokens on arXiv and OpenWebText2 datasets.
StreamingLLM [270] facilitates large FMs trained with a finite-length attention window to gen-
eralize to infinite stream decoding without the need for any fine-tuning. PCW [215] segments
a long context into chunks or “windows,” constrains the attention mechanism to operate solely
within each window, and reuses positional embeddings across the windows. LongNet [53] intro-
duces dilated attention, expanding the attentive field exponentially as the distance increases. This
innovation allows LongNet to scale transformers efficiently, enabling them to handle sequences of
up to 1 billion tokens. SLED [108], short for SLiding-Encoder and Decoder, repurposes and capital-
izes on well-validated short-text pre-trained language models. Despite competing effectively with
specialized models that are up to 50× larger, SLED does not require a dedicated and expensive
pre-training step.

4.4 Model Compression

As summarized in Figure 8, model compression refers to a set of techniques aimed at reducing the
model size without significant performance degradation, categorized into pruning, knowledge

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:16 M. Xu et al.

Fig. 8. Model compression techniques for LLMs.

Table 2. Model Compression Methods and Their Unique Challenges

Method Categories Unique Challenge

Pruning
Structured Pruning [177, 267, 301],

Unstructured Pruning [68, 224, 228], Contextual Pruning [174, 227]
Massive re-pre-training,

Unique transformer structures

Knowledge Distillation White-Box KD [39, 186], Black-Box KD [84, 235] Massive re-pre-training

Quantization Quantization-Aware Training [173, 232], Post-Training Quantization [50, 67]
Quantization outliers,

Per-tensor quantization

Low-Rank Decomposition [119, 152, 276] /

distillation (KD), quantization, and low-rank decomposition (LoRD). While compression has
been extensively studied in pre-LLM era [90, 91], compressing FMs faces unique challenges such
as weight outliers and extensive training efforts, as presented in Table 2.

4.4.1 Pruning. The pruning technique removes redundant or non-essential connections,
neurons, or layers from a neural network. The primary objective is to reduce the model size,
subsequently decreasing computational and storage costs, while maintaining model accuracy.
Structured pruning and unstructured pruning target weight reduction without modifying sparsity
during inference. In contrast, contextual pruning dynamically selects activated neurons or layers
during inference based on the sparsity of the model.

Structured pruning compresses large foundational models by eliminating entire structural com-
ponents, such as groups of consecutive parameters or hierarchical structures. Examples of these
structural components include channels or blocks of the model’s weights. It is often combined with
fine-tuning to mitigate accuracy loss. LLM-Pruner [177] is a task-agnostic structured pruning al-
gorithm that utilizes a small amount of data to assess the importance of coupled structure weights.
The method selectively removes non-essential model structures based on gradient information.
LLM-Pruner incorporates LoRA to recover the model’s accuracy after pruning. LoRAPrune [301]
is another structured pruning approach based on LoRA, leveraging LoRA’s weights and gradients
for importance estimation. This method iteratively eliminates excess channels and attention heads,
achieving superior results compared to LLM-Pruner. Lagunas et al. [133] improved structured prun-
ing techniques by incorporating blocks of variable sizes. This integration is applied within the
movement pruning framework during fine-tuning, resulting in the removal of entire model com-
ponents, such as attention heads. It achieves a 2.4× speedup and is 74% smaller compared to the
original BERT.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:17

Structured pruning is also employed in the training of large foundational models as well. Sheared
LLaMA [267] adopts an end-to-end approach to remove channels, encompassing layers, atten-
tion heads, intermediate layers, and hidden layers. Sheared LLaMA demonstrates the capability
to prune the LLaMA2-7B model down to 1.3 billion parameters. AdaPrune[106] accelerates neural
network training using transposable masks, resulting in a 2× speedup in matrix multiplications
during both inference and training. GUM [220] considers neuron specificity and introduces prun-
ing through network component-based global mobility and local uniqueness scores. This approach
aims to simultaneously maximize sensitivity and uniqueness, effectively reducing redundant pa-
rameters in large FM weights. PLATON [303] tackles the uncertainty in importance scores during
model pruning by employing the upper confidence bound of importance estimation. This approach
ensures stability in training and leads to improved generalization.

Unstructured pruning does not consider the inherent structure of the model. Typically, it removes
neurons with weights below a threshold, thereby compressing the model. When deploying un-
structured pruning, specialized techniques are required to implement model storage compression.
SparseGPT [68] treats the pruning framework as a generalized sparse regression problem and em-
ploys an approximate sparse regression solver, achieving 60% unstructured pruning on large GPT
models like 175B. Wanda [228] leverages the observation of emergent large-magnitude features
in large FMs. Wanda introduces sparsity by pruning weights with the smallest magnitudes multi-
plied by corresponding input activations, on a per-output basis. UPop [224] serves as a universal
vision-language transformer compression framework, which incorporates unifiedly multimodal
subnets and progressively searching/retraining. SIGE [224] is proposed to convert computation re-
duction into latency reduction on standard hardware, achieving notable accelerations for models
like DDPM, Stable Diffusion, and GauGAN with minimal edits.

Contextual pruning selects the sparse state of each layer, making it hardware-optimization
friendly. Deja Vu [174] dynamically predicts the sparsity of the next layer using the activations of
the previous layer. It determines which neurons of MLP blocks and the heads of attention blocks
need to be retained. To mitigate the overhead of this predictor, Deja Vu asynchronously predicts
the next layer. PowerInfer [227] utilizes the sparsity of activation to dynamically predict the hot-
activated neurons of the next layer and computes them on the GPU, whereas other cold-activated
neurons are computed on the CPU. In comparison to llama.cpp [76], PowerInfer achieves up to
11× acceleration, enabling the 40B model to output 10 tokens per second on a personal computer.

4.4.2 Knowledge Distillation. KD transfers knowledge from a complex, heavy model (i.e.,
teacher model) to a simpler corresponding model (i.e., student model) for model compression. In
general, there are two ways to apply KD to large FMs based on whether the internal structure of
the teacher model is considered: white-box KD and black-box KD.

Black-Box KD. Assuming that the internal structure of the teacher’s large base model is not vis-
ible, this approach fine-tunes the student model using prompt-response pairs generated by large
FMs’ API. The goal is to imbue the student model with the capabilities of the teacher model. For
large FMs, the insights gained due to the increased parameter count contribute to strong general-
ization abilities. Therefore, techniques such as In-Context Learning (ICL) [55] and CoT [257] can
be utilized to enable the student model to thoroughly learn the capabilities of the large FMs. ICL
distillation transfers few-shot learning and language model capabilities from the teacher model to
the student model by integrating ICL objectives with traditional language modeling objectives. In
Meta-ICL [186] and Metal-ICL [39], language models undergo meta-training on diverse tasks us-
ing ICL objectives. This process enables them to fine-tune for unseen tasks through ICL. Multitask-
ICT [105] introduces the concept of ICL distillation, fine-tuning models with ICL objectives and
examples from target tasks. CoT introduces intermediate reasoning steps in prompts, guiding

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:18 M. Xu et al.

language models to solve complex reasoning tasks step by step. Fu et al. [71] enhance the mathe-
matical reasoning capabilities of smaller models by instructing them through CoT distilled from
LLM teachers. Distilling step-by-step [99] extracts rationales from large FMs using CoT in a multi-
task framework, providing additional guidance for training smaller models in a multi-task environ-
ment. Fine-tune-CoT [97] uses zero-shot CoT prompting techniques, employing random sampling
to generate multiple reasoning solutions from large FMs to guide the training of student models.

White-Box KD. In contrast to black-box KD, white-box KD not only has access to the output
results of the teacher model but also to its structure and intermediate results. Therefore, white-
box KD can better leverage the structure of the teacher model, enabling smaller student models to
replicate and learn the capabilities of larger teacher models.

Timiryasov Tastet [235] train an ensemble consisting of a GPT-2 and small LLaMA models on
the developmentally plausible BabyLM dataset. Subsequently, they distilled it into a small LLaMA
model with 58 million parameters, surpassing in performance both of its teachers as well as a
similar model trained without distillation. MiniLLM [84] distills smaller language models from
generative larger language models. This approach replaces the forward KLD (Kullback-Leibler
Divergence) objective in the standard KD approaches with reverse KLD, which is more suit-
able for KD on generative language models, to prevent the student model from overestimating
the low-probability regions of the teacher distribution. Instead of solely relying on a fixed set
of output sequences, GKD [11] trains the student model using self-generated output sequences.
TED [155] employs task-aware filters to align the hidden representations of the student and the
teacher at each layer. These filters are designed to select task-relevant knowledge from the hidden
representations.

4.4.3 Quantization. Quantization is a well-established model compression method to mitigate
the storage and computational demands. Compared to traditional DNNs, LLMs exhibit a higher
frequency of activation outliers, which are crucial for maintaining model accuracy. Standard quan-
tization often removes these outliers, leading to a significant performance drop.

Quantization-aware training (QAT) involves training a quantized model in such a way that
it adapts its parameters to the lower precision introduced by quantization. The primary objective
of this process is to mitigate the accuracy loss that occurs as a result of quantization. LLM-QAT
tackles the issue of obtaining training data for LLMs by leveraging pre-trained models to gener-
ate samples through data-free distillation. Concurrently, it quantizes weights, activations, and KV
cache, thereby improving training throughput. QuantGPT [232] achieves this by incorporating
contrastive distillation from a full-precision teacher model and distilling logit information to a
quantized student model during autoregressive pre-training. BitNet [247] pioneers QAT for 1-bit
language models, training the language model with 1-bit weights and activations. Due to the sub-
stantial parameter count in large models often reaching tens or hundreds of billions, the training
cost of QAT remains considerable. On the one hand, QAT for large FMs is often combined with
KD to reduce the training cost, as seen in approaches such as LLM-QAT and QuantGPT. On the
other hand, quantization is frequently employed in the fine-tuning process of large models, such
as in PEQA [266] and QLoRA [51].

Post-training quantization (PTQ) converts a trained full-precision model to a low-precision
model without retraining. The advantage of PTQ lies in compressing models without altering
the model structure or necessitating retraining, thereby reducing the storage and computational
costs of models. Due to its low deployment cost, PTQ is also the most easily deployable and
widely applicable technique in model compression. However, unlike QAT and distillation, PTQ
lacks the feedback loop for adjusting precision through training. Research related to PTQ often
focuses on efficiently preserving relevant information in weights/activations while compressing

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:19

models. PTQ can be categorized into two groups: weight-only quantization and weight-activation
co-quantization.

Weight-only Quantization. Weight-only quantization only quantizes the model weights. There
are two primary methods for mitigating quantization errors in the weight quantization of large
FMs.

The first category involves identifying outliers and important weights in weights that signifi-
cantly contribute to accuracy and treating these outliers specially. For instance, SpQR [52] iden-
tifies outlier weights and maintains them with high precision while quantizing the rest of the
weights. LLM.int8() [50] employs vectorized quantization and mixed-precision decomposition to
handle outlier values for efficient inference. LLM.int8() utilizes 8-bit quantization for matrix multi-
plication, effectively reducing GPU memory usage during inference. AWQ [158] reduces quantiza-
tion error by protecting the top 1% important weights in the model, utilizing per-channel scaling
to determine the optimal scaling factor. OWQ [135] analysis suggests that abnormal activations
amplify quantization errors, and it employs a mixed-precision scheme, applying higher-precision
quantization to weights with a significant impact from activated outlier values. SqueezeLLM [122]
observes that sensitive weights determine the final model’s quantization performance and pro-
poses a non-uniform quantization approach to minimize quantization errors in these sensitive
weights.

The second category of quantization reduction methods is based on the second-order infor-
mation updated weights. GPTQ [69] employs layer-wise quantization with OBQ [67], utilizing
inverse Hessian information to update weights. GPTQ reduces the bit-width of each weight to 3
or 4 bits, allowing quantization of GPT models with 175 billion parameters with minimal accuracy
loss. QuIP [33] uses an adaptive rounding process, minimizing a second-order proxy objective for
quantization.

Weights-Activation Co-quantization. Quantizing both weights and activation facilitates deploy-
ment on hardware accelerators. SmoothQuant [269] takes advantage of the similarity in the
channel-wise activations of different tokens and performs quantization on both weight and ac-
tivation using per-channel scaling transforms. RPTQ [293] recognizes the substantial range differ-
ences across different channels, reordering the channels for quantization and integrating them into
layer normalization and linear layer weights. OliVe [85] adopts outlier-victim pair quantization and
locally processes outliers. Outlier Suppression+ [258] builds upon Outlier Suppression [259], dis-
covering that harmful outliers exhibit an asymmetric distribution mainly concentrated in specific
channels. Considering the asymmetry of outliers and quantization errors from the weights of the
next layer, this approach performs channel-level translation and scaling operations. QLLM [161]
addresses the issue of activation outliers through an adaptive channel reassembly method and
mitigates the information loss caused by quantization using calibration data. LLM-FP4 [285]
quantizes weights into 4-bit float points, proposes per-channel activation quantization, and re-
parameters additional scaling factors as exponential biases of weights. ZeroQuant [286] combines
layer-wise KD and optimized quantization support to achieve 8-bit quantization. FlexRound [136]
updates the quantization scale of weights and activations by minimizing the error between
the quantized values and the full-precision values. ATOM [310] significantly boosts serving
throughput by using low-bit operators and considerably reduces memory consumption via low-bit
quantization.

There is also extensive quantization research for backbone networks in FMs like ViT and BERT.
For instance, BinaryBERT [195] and I-BERT [21] have achieved higher accuracy for BERT under
low-precision quantization. Wang et al. [253] exploit the operator fusion [194], PTQ techniques,
and structured pruning [133] to reduce the memory cost. They also reduce the number of compu-
tation operations of DeiT-Tiny [237]. Q-ViT [150], I-ViT [154], and OFQ [165] also achieve high

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:20 M. Xu et al.

Table 3. Popular Open Source Tools for Training and Deploying Large FMs

Name Descriptions Tags Name Descriptions Tags

DeepSpeed [1]

An open-sourced Python library proposed by Microsoft.

Supports MoE, long-sequence training, RLHF, ZeRO

optimizations,and model compression.

C/T/I Megatron [190]

The first cloud training system that introduces tensor

parallelism to distributed training models like GPT,

BERT, and T5. It is proposed by NVIDIA.

C/T

Alpa [312] An automatic FM parallelization engine from UCB. C/T/I FairScale [61] A new scaling library from Meta. C/T/I

Colossal

AI [144]

From HPC-AI Tech. Supports common parallelism

strategies and heterogeneous memory management.
C/T/I FlexFlow [183]

A cloud FM training and serving compiler from CMU

and Stanford University. Automatic parallelization.
C/T/I

PyTorch

FSDP [309]

A cloud large-scale training system atop PyTorch. It

shards parameters, optimizer states, and gradients.
C/T/I

HF

PEFT [2]

An efficient fine-tuning system from HuggingFace. It

supports a set of PEFT methods like LoRA and p-tuning.
C/T

MII [1] A library from DeepSpeed. Supports FastGen. C/I vLLM [132] A serving engine from UC Berkeley. PagedAttention. C/I

LightLLM [4] A framework for token-wise’s KV cache management. C/I Ray LLM [9] A multiple LLMs serving solution from Anyscale. C/I

TGI [3]

A high-performance serving engines from HuggingFace.

It supports tensor parallelism, quantization with

bitsandbytes and GPT-Q, and PagedAttention.

C/I TRT-LLM [8]

A TensorRT toolbox for optimized LLM inference. It

supports AWQ, GPTQ, SmoothQuant, speculative

decoding, pipeline/tensor parallelism, and PagedAttention.

C/I

llama.cpp [76]

A popular on-device LLM serving engine supporting

mixed F16/F32 precision and 2/3/4/5/6/8-bits int

quantization. Mainly for LLaMA-based LLMs.

C/E/I MNN-LLM [7]

An edge LLMs serving engine proposed by Alibaba

and inherited from MNN. It optimizes the inference

procedure separately in the prefill/decoding phase.

E/I

mllm [6] A versatile and efficient on-device multimodal engine. E/I MLC-LLM [5] Natively deploy LLMs with compiler-accelerated APIs. C/E/I

C, cloud; E, edge; T, training; I, inference.

accuracy for ViT under low-precision quantization. Q-Diffusion [147] compresses the noise esti-
mation network to expedite the generation process of diffusion models.

4.4.4 Low-Rank Decomposition (LoRD). LoRD approximates the weight matrix in large FMs by
decomposing a given weight matrix into two or more smaller matrices. LoRD has been widely
applied in large FM fine-tuning methods like LoRA. LoRD has also shown substantial compres-
sion capabilities with minimal impact on performance, highlighting its potential for large FM com-
pression [119]. To reduce the dimensionality of high-dimensional token embeddings underpinning
large FMs, TensorGPT [276] proposes an approach based on the tensor-train decomposition, where
each token embedding is treated as a matrix product state that can be efficiently computed in a
distributed manner. Through TensorGPT, the embedding layer can be compressed by a factor of
up to 38.40×. LoSparse [152] employs low-rank approximation to compress the coherent and ex-
pressive elements. The method uses iterative training to assess the significance scores of column
neurons for the pruning process, showcasing superior performance compared to traditional iter-
ative pruning techniques. Saha et al. [219] compress matrices through randomized low-rank and
low-precision factorization, achieving compression ratios as aggressive as 1 bit per matrix coor-
dinate while surpassing or maintaining the performance of traditional compression techniques.
ViTALiTy [47] is an algorithm-hardware co-designed framework to enhance the inference effi-
ciency of ViTs. It achieves approximation of the dot-product softmax operation with first-order
Taylor attention, utilizing row-mean centering as the low-rank component to linearize the cost of
attention blocks.

5 Resource-Efficient Systems

Training and serving systems are key to practical large FMs. This section investigates the system
research to enable resource-efficient large FMs, notable in four aspects: (1) distributed training, (2)
hardware-aware optimizations, (3) serving in cloud, and (4) serving in edge. Table 3 summarizes
widely used open source frameworks in this domain.

5.1 Distributed Training

Distributed training systems serve as the foundation for training large FMs, encompassing
pre-training and fine-tuning phases. Pre-training, involving intensive computation and commu-
nication, demands substantial resources compared to other large FM processes. Fine-tuning is
widely used to transform a general-purpose model into a specialized model for particular use cases.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:21

Considering the large scale and new execution pattern of large FMs, designing resource-efficient
systems for FMs has drawn great attention from the community. We categorize techniques
for optimizing distributed training systems, covering aspects such as resilience, parallelism,
communication, storage, and heterogeneous GPUs. Additionally, MoE has emerged as a trend
in training extremely large models, for which several approaches are tailored. These specialized
methods are detailed at the end of this subsection.

Resilience. The increasing size and duration of training for large FMs have led to a rise in fail-
ures, emphasizing the importance of resilient training [261]. Fault tolerance approaches for large
FMs primarily manifest in four forms. First, Varuna and Gemini [18, 256] facilitate resilient train-
ing by implementing checkpoints to restart training. Varuna [18] is designed for training in com-
modity clusters with low-bandwidth networks, frequent pre-emptions, and user-friendly features.
However, Gemini [256] expedites failure recovery through in-memory checkpoints. Second, Bam-
boo [233] utilizes redundant computations where one node performs computations for both itself
and its neighbors. Bamboo avoids the overhead of recovering but introduces the overhead during
training. Third, activation checkpointing [131, 307], which avoids storing the activation and recom-
putes it when needed, falls between the checkpointing and redundant computation approaches.
The fourth approach involves recovering partial layers, as demonstrated by Oobleck [109]. In the
event of a failure, the affected pipeline can be restored using partial layers from other replicas,
incurring less overhead than employing the entire checkpoint.

Parallelism. Parallelism plays a crucial role in distributed training, especially for large FMs.
Three types of parallelism are commonly employed for training large FMs. Data parallelism in-
volves distributing the data across workers to scale up distributed training. DeepSpeed ZeRO [213]
optimizes memory usage by splitting the model states. Model parallelism partitions the model in
intra-layer paradigm (tensor parallelism [190]) or inter-layer paradigm (pipeline parallelism [134,
198]). Tensor parallelism improves the training speed while leading to more communication.
Pipeline parallelism improves GPU utilization by filling the bubbles. Breadth-first pipeline par-
allelism [134] designs a looping placement and breadth-first schedule to achieve both high GPU
utilization and low cost. PipeFisher [198] assigns extra work to the bubbles for further benefits.
Mobius [64] is designed for fine-tuning with a novel pipeline parallelism scheme and heteroge-
neous memory. FTPipe [59] partitions the model into finer-grained blocks rather than layers for
flexible execution and low resource demand. Sequence parallelism [131, 145] is designed for the
trend of long sequence training where training one sentence exceeds the memory capacity of one
worker. Sequence parallelism divides the long sequence into multiple chunks and puts them on
different workers. In practice, these parallelisms are usually used in a hybrid way. Galvatron [185]
can automatically determine the most efficient hybrid parallelism strategy.

Communication. The large scale and complex parallelism lead to significant communication
overhead. We summarize the optimization of communication into two categories: reducing the
communication time directly and hiding the communication. Some work explores parallelism-
aware communication compression [226] and heterogeneity-aware traffic reduction [307]. Existing
work usually overlaps the communication with computation, by unifying the abstraction of com-
putation and communication [110], decomposing the original communication collective [251], or
designing a novel pipelining schedule [317].

Storage. Large FMs require a significant amount of storage resources, such as GPU memory
for model states, host memory for model analysis, and disk for dataset and checkpoint. Various
approaches have been proposed to alleviate the storage constraints for efficiency. Offloading is a
common way to reduce the stress of GPU memory. ZeRO-Offload [216] offloads data and compu-
tations to CPU to train large models on a single GPU. FlashNeuron [19], however, offloads selec-
tive data to the SSD for higher throughput. Additionally, Behemoth [124] replaces low-capacity,

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:22 M. Xu et al.

high-performance HBM with high-capacity, low-performance NAND flash to enable data-parallel
training for large FMs.

Heterogeneous GPUs. Training on specialized high-performance GPU clusters is impossible
for most people or enterprises. Moreover, heterogeneous GPUs commonly exist even in special-
ized GPU clusters. Therefore, some efforts try to train large FMs on heterogeneous GPUs. Het-
pipe [202] accelerates training with low-performance GPUs and Wave Synchronous Parallel to
synchronize parameters among heterogeneous GPUs. Whale [111] introduces a hardware-aware
load-balancing algorithm to speed up training.

Mixture-of-Experts. MoE is an efficient approach to scaling up DNN models. The goals of
optimizing MoE training systems are mainly efficiency and scalability. Existing work mainly
optimizes the dynamism-related mechanisms, parallelism, and communication in MoE training.
MegaBlocks [74] leverages sparse primitives to handle dynamic routing and load-imbalanced com-
putation. Brainstorm [41] is a framework for dynamic DNNs by abstracting the dynamism and
profile-based optimization. FlexMoE [193] focuses on the dynamic expert management and device
placement problem. Additionally, Tutel [107] designs dynamic adaptive parallelism and pipelin-
ing strategies. SmartMoE [297] optimizes the parallelism strategy for efficient MoE training with
a combination of offline and online mechanisms. Janus [163] changes communication from an
expert-centric paradigm to a data-centric paradigm for faster communication in MoE training.
MoE-Mamba [206] integrates MoE with Mamba [81] to enable selective SSMs, reaching the same
performance as Mamba in 2.35× fewer training steps.

5.2 Hardware-Aware Optimizations

Some hardware-aware methods are also proposed to optimize FM. For instance, EdgeBERT [231]
proposes an in-depth algorithm-hardware co-design for latency-aware energy optimization for
multi-task NLP. Its core is an entropy-based early exit prediction for dynamic DVFS at a sentence
granularity. FlightLLM [296] is an end-to-end LLM inference mapping flow on FPGAs. Its core is
the computation and memory overhead of LLMs can be solved by utilizing FPGA-specific resources
(e.g., DSP48 and heterogeneous memory hierarchy). SpAtten [248] proposes a sparse attention
mechanism with cascade token and head pruning. It designs a novel top-k engine to rank token
and head importance scores with high throughput, and along with other careful optimizations like
progressive quantization. A3 [88] makes a key insight that the attention mechanism is semantically
a content-based search where a large portion of computations ends up not being used. Recognizing
that, it proposes an architecture with algorithmic approximation and hardware specialization.

5.3 Serving on Cloud

FM serving has two main phases: the prefill phase and the decoding phase. The prefill phase often
processes a long sequence of input tokens in parallel, which is compute-intensive and can lead
to potential bottlenecks if resources are not carefully allocated. In contrast, the decoding phase
generates one token at a time, making it more bandwidth-bound [314]. Therefore, a series of opti-
mizations for FM serving systems have been introduced to accelerate this process.

Inference Accelerating. To accelerate the computation in a single accelerator, kernel optimiza-
tion is a common approach. FlashAttention [43] and FlashAttention-2 [42] design for FM training
can be simply used to accelerate the prefill phase. However, due to the unique characteristics of the
decoding phase, Flash-Decoding [45] proposes a specific NVIDIA CUDA kernel to accelerate the
decoding phase. FlashDecoding++ [98] further improves the performance of Flash-Decoding by
optimizing the softmax operation and flat GEMM operation in the decoding phase and provides
additional AMD GPU support. DeepSpeed-Inference [15], ByteTransformer [299], and Google’s
PaLM serving system [209] also optimize GPU/TPU optimizations for small batch size scenarios,

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:23

which is common in FM serving but rare in FM training. When scaling FM inference to numerous
GPUs at a large scale, many works [15, 209] exploit combinations of various parallelism strategies,
such as data parallelism, pipeline parallelism, tensor parallelism, and expert parallelism. These
works efficiently serve FM inference on multiple modern accelerators, such as GPUs/TPUs.

Given the autoregressive nature of FMs, various requests may feature distinct lengths of input
tokens and output tokens. To address this issue, request batching and scheduling constitute an-
other set of methods to enhance the computational efficiency of request processing. Orca [291]
proposes selective batching and iteration-level scheduling to batch requests of different lengths
at the granularity of iterations to increase the maximum batch size. FlexGen [223] proposes a
request scheduling algorithm to mitigate the impact of offloading on the performance of latency-
insensitive FM serving in a single GPU. FastServe [263] proposes an iteration-level preemptive
scheduling and proactive KV cache swapping to mitigate the impact of head-of-line blocking on
the performance of distributed FM serving. SARATHI [13] and DeepSpeed-FastGen [1] split the
computation of the prefill phase into small chunks and schedule these chunks with the decoding
phase to mitigate the impact of the prefill phase on the performance of large FMs serving. Split-
wise [203] splits the prefill phase and the decoding phase onto different machines according to their
different computation and memory requirements. Sarathi-Serve [12] introduces a chunked-prefills
scheduler which splits a prefill request into near equal sized chunks and creates stall-free sched-
ules that adds new requests in a batch without pausing ongoing decodes. dLoRA [264] dynamically
merges/unmerges adapters with the base model and migrating requests/adapters between worker
replicas, significantly improving the serving throughput.

Memory Saving. An FM consumes a large amount of memory during the serving process. To re-
duce the memory consumption of FM serving, many works propose various memory management
techniques. As for FMs’ parameters and activations, DeepSpeed-Inference [15] and FlexGen [223]
offload activations or model parameters to the DRAM or NVMe memories when the GPU memory
is insufficient.

KV cache is another important memory component in FM serving. To reduce the memory con-
sumption of KV cache, vLLM [132] adopts a block-level on-demand memory allocation mechanism,
which only allocates memory to intermediate states when needed. vLLM also proposes a new op-
erator, Paged Attention, to support attention operation when using this memory allocation mech-
anism. S-LoRA [222] extends this idea to Unified Paging to manage multiple LoRA adapters at the
same time. SGLang [313] further exposes prompt programming primitives to users to enable more
complex KV cache management among all requests with the help of RadixAttention.

Emerging Platforms. Typical FM serving systems are usually deployed on data centers
equipped with plenty of homogeneous high-performance servers. Due to the scarcity and cost
of these high-performance servers, there are also some FM serving systems specifically designed
for other deployment platforms. SpotServe [184] tries to serve FMs on spot instances, which are
low-cost but unreliable cloud instances. SpotServe dynamically adjusts its parallelism strategy to
accommodate the impact of spot instance preemption. As for FM serving on heterogeneous GPUs,
HexGen [115] uses an evolutionary algorithm to search for high-performance FM placement on
heterogeneous GPUs.

5.4 Serving on Edge

Large FMs have been widely adopted in many real-world mobile applications, such as search
engines [10], chatbots [282], and intelligent agents [149]. With ever-increasing data privacy
concerns and the stringent response latency requirement, running large FM on mobile devices
locally (i.e., on-device inference) has recently attracted attention from both academia and industry.
While small language models [176, 289] have been developed for on-device deployment, the

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:24 M. Xu et al.

runtime efficiency (decoding speed, memory footprint, energy consumption, etc.) still remains a
key challenge. Thereby, many on-device inference optimization techniques have been introduced.

Edge-Cloud Collaboration. A common strategy to tackle the scarce resources on mobile de-
vices is to speed up the intensive inference with a powerful edge/cloud server collaboration. For
instance, EdgeFM [281] queries and adapts the large FMs to the specific edge models with cus-
tomized knowledge and architectures so that the dynamic edge model can ensure both low latency
and close accuracy to the original large FMs.

On-Device MoE. On-device MoE models are proposed to only execute in routed sparse param-
eters during inference, which can decrease computation (detailed in Section 3.2). EdgeMoe [288]
identifies the problem that experts have to be dynamically loaded into memory during inference.
To tackle this issue, this approach proposes expert-wise bit-width adaptation to reduce the size of
expert parameters with acceptable accuracy loss, saving parameters’ loading time. PC-MoE [128]
is based on a crucial observation that expert activations are subject to temporal locality. Based on
this observation, PC-MoE proposes Parameter Committee, which intelligently maintains a subset
of crucial experts in use to reduce resource consumption.

Memory Optimization. Since large FMs often rely on large parameter sizes and on-device
memory resources are scarce (e.g., 8 GB), inferring large FMs on devices faces the challenge of
“memory wall.” To tackle this issue, LLMCad [272] utilizes speculative decoding [139], which can
offload most workloads to a smaller memory-resident draft model. PowerInfer [227] relies on large
FMs runtime sparsity (i.e., only hot neurons are consistently activated across inputs). To that end,
PowerInfer pre-loads hot-activated neurons onto the GPU for fast access, whereas cold-activated
neurons are computed on the CPU, thus significantly reducing GPU memory demands and CPU-
GPU data transfers.

I/O Optimization. As parameter size increasing speed is larger than edge devices’ memory in-
creasing speed, dynamically loading parameters from disks to memory is avoidable. STI [86] identi-
fies that loading parameters time is highly longer than computation time. To address this problem,
STI proposes dynamically adapting weights bit-width during the loading procedure according to
parameters importance, minimizing loading overhead under maximum inference accuracy. LLM
in a flash [14] solves this problem by fine-grained management of flash storage to reduce the vol-
ume of data transferred from flash to memory as well as reading data in larger, more contiguous
chunks.

Kernel Optimization. Computing resources are also crucial while limiting resources on the
devices. A prior study [304] implements the first 32-bit integer-based edge kernel for ViTs with
post-training integer-only quantization to speed up the inference process. This method also in-
troduces a range-constrained quantization technique for activation and normalization operators
in transformers to tradeoff data range and inference accuracy. Llm.npu [273] offloads most of the
LLM inference computation to a hardware accelerator (NPU) to significantly improve the runtime
efficiency.

6 Conclusion and Future Directions

This survey provided a holistic, systematic overview of recent literature toward resource-efficient
large FMs. We first presented the preliminary background and cost analysis of the popular FMs,
including language, vision, and multimodal. We then dived into the model architecture, algorithm,
and system designs to enable a more resource-efficient large FM lifecycle. In the future, the re-
search of this domain will continue to be (or even more) crucial since the scaling law guarantees a
promising future of more powerful AI with larger and larger models. Such research is also highly
interdisciplinary, involving various CS communities such as machine learning, NLP/CV/Speech,
networking, cloud computing, and edge computing.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:25

The research opportunities for resource-efficient large FMs are extremely large, as presented
next.

Cloud-Edge Hybrid Deployment. To enable ubiquitous, privacy-preserving, and highly avail-
able general intelligence, many FMs will ultimately sink to near-user devices. Preliminary efforts
have been already conducted to bring LLaMA-7B to smartphones and PCs. The killer applications
include personal assistants/agents [149, 260] and multimodal information retrieval [140], among
others. In the future, at what size and speed the FMs can run on devices will become a key com-
petitive force in the business model of hardware vendors.

Exploiting the Model Sparsity. With the model being larger, the activated ratio of the model
will become smaller for a given task. Recent literature [174] finds that even a densely trained non-
MoE model exhibits runtime activation sparsity, which can be exploited to reduce the inference
time and memory footprint. We believe that exploiting the model and activation sparsity will be
a promising direction toward sustainable model size scaling. More efficient sparse architectures
other than MoE could emerge.

Large FM as a Service. On both clouds and devices, large FMs are unifying the DNN ecosys-
tem [292]. Ultimately, it becomes a universal service to be invoked just as today’s Web and Data-
base. On the one hand, it opens the opportunity for highly hardware-algorithm co-design and
optimizations, and on the other hand, it poses new challenges in system and infrastructure design
for scheduling, load balancing, and security and isolation.

Agent as a Holistic System to Optimize. In the future, FMs, especially LLMs, will be used as
a key building block for establishing agents [149, 260]. Its efficiency shall not be considered as in
a stand-alone LLM service; instead, the algorithm and system designs need to cater to the specific
agent workflow. For example, an agent system might require multiple FMs to cooperate, where
there exists inherent logic dependency. In this process, the design space of selecting the proper
FMs for each task and scheduling them on a given set of hardware resources to maximize the
agent performance is huge.

Practical Privacy-Preserving FM. As the volume of user data uploaded to the cloud for FM
processing continues to increase, the severity of privacy concerns correspondingly escalates. Exist-
ing methods include federated learning,2 homomorphic encryption, and disentanglement learning.
While being theoretically sound, those methods still confront significant performance challenges,
hindering their large-scale in-the-wild deployment. A promising direction involves the develop-
ment of innovative privacy-preserving techniques specifically designed for large FMs, or the re-
finement of existing methods, to effectively balance privacy with performance.

Acknowledgments

This project was supported by NSFC (No. 62102045 and No. 62325201), and Super Computing
Platform of Beijing University of Posts and Telecommunications.

References

[1] GitHub. 2023. DeepSpeed-FastGen: High-Throughput Text Generation for LLMs via MII and DeepSpeed-Inference.

Retrieved December 3, 2024 from https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-fastgen

[2] GitHub. 2023. Huggingface PEFT. RetrievedDecember3,2024fromhttps://github.com/huggingface/peft

[3] GitHub. 2023. HuggingFace Text Generation Inference. Retrieved December 3, 2024 from https://github.com/

huggingface/text-generation-inference

[4] GitHub. 2023. LightLLM. Retrieved December 3, 2024 from https://github.com/ModelTC/lightllm

[5] GitHub. 2023. mlc-llm. Retrieved December 3, 2024 from https://github.com/mlc-ai/mlc-llm

[6] GitHub. 2023. mllm. Retrieved December 3, 2024 from https://github.com/UbiquitousLearning/mllm

2A brief literature survey of resource-efficient federated learning can be found in the appendix.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-fastgen
Retrieved December 3, 2024 from https://github.com/huggingface/peft
https://github.com/huggingface/text-generation-inference
https://github.com/ModelTC/lightllm
https://github.com/mlc-ai/mlc-llm
https://github.com/UbiquitousLearning/mllm


110:26 M. Xu et al.

[7] GitHub. 2023. mnn-llm. Retrieved December 3, 2024 from https://github.com/wangzhaode/mnn-llm

[8] GitHub. 2023. NVIDIA TensorRT-LLM. Retrieved December 3, 2024 from https://github.com/NVIDIA/TensorRT-LLM

[9] GitHub. 2023. Ray LLM. Retrieved December 3, 2024 from https://github.com/ray-project/ray-llm

[10] Microsoft. 2024. Microsoft Recall. Retrieved December 3, 2024 from https://support.microsoft.com/en-us/windows/

retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c

[11] Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, and Sabela Ramos. 2023. GKD: Generalized knowledge distillation

for auto-regressive sequence models. arXiv preprint arXiv:2306.13649 (2023).

[12] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gulavani, Alexey Tu-

manov, and Ramachandran Ramjee. 2024. Taming throughput-latency tradeoff in LLM inference with Sarathi-Serve.

In Proceedings of the 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI’24). 117–134.

[13] Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gulavani, and Ramachandran Ram-

jee. 2023. SARATHI: Efficient LLM inference by piggybacking decodes with chunked prefills. arXiv preprint

arXiv:2308.16369 (2023).

[14] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik Cho, Carlo C. Del Mundo, Moham-

mad Rastegari, and Mehrdad Farajtabar. 2023. LLM in a flash: Efficient large language model inference with limited

memory. arXiv:2312.11514 [cs.CL] (2023).

[15] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton Zheng, Olatunji

Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. 2022. DeepSpeed-Inference: Enabling efficient inference

of transformer models at unprecedented scale. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC’22). IEEE, 1–15.

[16] Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hofmann. 2023. Dy-

namic context pruning for efficient and interpretable autogressive transformers. arXiv:2305.15805 [cs.CL] (2023).

[17] Akari Asai, Mohammadreza Salehi, Matthew E. Peters, and Hannaneh Hajishirzi. 2022. Attempt: Parameter-efficient

multi-task tuning via attentional mixtures of soft prompts. In Proceedings of the 2022 Conference on Empirical Methods

in Natural Language Processing. 6655–6672.

[18] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ramjee, and Nipun Kwatra. 2022. Varuna: Scalable,

low-cost training of massive deep learning models. In Proceedings of the 17th European Conference on Computer

Systems. 472–487.

[19] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hakbeom Jang, Tae Jun Ham, and Jae W. Lee. 2021.

FlashNeuron: SSD-enabled large-batch training of very deep neural networks. In Proceedings of the 19th USENIX

Conference on File and Storage Technologies. 387–401.

[20] Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. 2023. Fast and robust early-exiting framework for

autoregressive language models with synchronized parallel decoding. arXiv preprint arXiv:2310.05424 (2023).

[21] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin King. 2020. Bina-

ryBERT: Pushing the limit of BERT quantization. arXiv preprint arXiv:2012.15701 (2020).

[22] Arian Bakhtiarnia, Qi Zhang, and Alexandros Iosifidis. 2021. Multi-exit vision transformer for dynamic inference.

arXiv:2106.15183 (2021).

[23] Peter Belcak and Roger Wattenhofer. 2023. Fast feedforward networks. arXiv:2308.14711 [cs.LG] (2023).

[24] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The long-document transformer. arXiv preprint

arXiv:2004.05150 (2020).

[25] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in Neural

Information Processing Systems 33 (2020), 1877–1901.

[26] Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. 2022. Recurrent memory transformer. Advances in Neural Infor-

mation Processing Systems 35 (2022), 11079–11091.

[27] Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. 2023. Scaling transformer to 1M tokens and beyond with RMT.

arXiv preprint arXiv:2304.11062 (2023).

[28] Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. 2024. EfficientViT: Multi-scale linear attention for

high-resolution dense prediction. arXiv:2205.14756 [cs.CV] (2024). https://arxiv.org/abs/2205.14756

[29] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. 2023. Medusa:

Simple framework for accelerating LLM generation with multiple decoding heads. Retrieved December 3, 2024 from

https://github.com/FasterDecoding/Medusa

[30] Qingqing Cao, Bhargavi Paranjape, and Hannaneh Hajishirzi. 2023. PuMer: Pruning and merging tokens for efficient

vision language models. arXiv:2305.17530 [cs.CV] (2023).

[31] Ayan Chakrabarti and Benjamin Moseley. 2019. Backprop with approximate activations for memory-efficient net-

work training. Advances in Neural Information Processing Systems 32 (2019), 1–10.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://github.com/wangzhaode/mnn-llm
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/ray-project/ray-llm
https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c
https://arxiv.org/abs/2312.11514
https://arxiv.org/abs/2305.15805
https://arxiv.org/abs/2308.14711
https://arxiv.org/abs/2205.14756
https://arxiv.org/abs/2205.14756
https://github.com/FasterDecoding/Medusa
https://arxiv.org/abs/2305.17530


Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:27

[32] Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing, and Zhiqiang Shen. 2023. One-for-All: Generalized LoRA for

parameter-efficient fine-tuning. arXiv preprint arXiv:2306.07967 (2023).

[33] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. 2023. QuIP: 2-Bit quantization of large language

models with guarantees. arXiv preprint arXiv:2307.13304 (2023).

[34] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper. 2023.

Accelerating large language model decoding with speculative sampling. arXiv abs/2302.01318 (2023). https://api.

semanticscholar.org/CorpusID:256503945

[35] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. 2021. CrossViT: Cross-attention multi-scale vision transformer

for image classification. arXiv:2103.14899 [cs.CV] (2021).

[36] Guoxin Chen, Yiming Qian, Bowen Wang, and Liangzhi Li. 2023. MPrompt: Exploring multi-level prompt tuning for

machine reading comprehension. arXiv preprint arXiv:2310.18167 (2023).

[37] Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Hassan Awadallah, Zhangyang Wang, and Yu Cheng. 2021. DSEE:

Dually sparsity-embedded efficient tuning of pre-trained language models. arXiv preprint arXiv:2111.00160 (2021).

[38] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. 2023. LongLoRA. arXiv

preprint arXiv:2309.12307 (2023).

[39] Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. 2021. Meta-learning via language model in-context

tuning. arXiv preprint arXiv:2110.07814 (2021).

[40] Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. 2023. Adapting language models to compress

contexts. arXiv:2305.14788 [cs.CL] (2023).

[41] Weihao Cui, Zhenhua Han, Lingji Ouyang, Yichuan Wang, Ningxin Zheng, Lingxiao Ma, Yuqing Yang, Fan Yang,

Jilong Xue, Lili Qiu, et al. 2023. Optimizing dynamic neural networks with Brainstorm. In Proceedings of the 17th

USENIX Symposium on Operating Systems Design and Implementation. 797–815.

[42] Tri Dao. 2023. FlashAttention-2: Faster attention with better parallelism and work partitioning. arXiv preprint

arXiv:2307.08691 (2023).

[43] Tri Dao, Dan Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Re. 2022. FlashAttention: Fast and memory-efficient

exact attention with IO-awareness. Advances in Neural Information Processing Systems 35 (2022), 16344–16359.

[44] Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Re. 2022. Hungry hungry

hippos: Towards language modeling with state space models. arXiv preprint arXiv:2212.14052 (2022).

[45] Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. 2023. Flash-Decoding for Long-Context Inference. Re-

trieved December 3, 2024 from https://crfm.stanford.edu/2023/10/12/flashdecoding.html

[46] Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang, Peng Shi, Wenpeng Yin, and Rui Zhang. 2023. Unified low-

resource sequence labeling by sample-aware dynamic sparse finetuning. arXiv preprint arXiv:2311.03748 (2023).

[47] Jyotikrishna Dass, Shang Wu, Huihong Shi, Chaojian Li, Zhifan Ye, Zhongfeng Wang, and Yingyan Lin. 2023. ViTAL-

iTy: Unifying low-rank and sparse approximation for vision transformer acceleration with a linear Taylor attention.

In Proceedings of the 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA’23). IEEE,

415–428.

[48] Alex de Vries. 2023. The growing energy footprint of artificial intelligence. Joule 7, 10 (2023), 2191–2194.

[49] Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata Mukherjee. 2023.

SkipDecode: Autoregressive skip decoding with batching and caching for efficient LLM inference. arXiv preprint

arXiv:2307.02628 (2023).

[50] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. LLM.int8(): 8-bit matrix multiplication for

transformers at scale. arXiv:2208.07339 [cs.LG] (2022).

[51] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. Qlora: Efficient finetuning of quantized

LLMs. arXiv preprint arXiv:2305.14314 (2023).

[52] Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander

Borzunov, Torsten Hoefler, and Dan Alistarh. 2023. SpQR: A sparse-quantized representation for near-lossless LLM

weight compression. arXiv preprint arXiv:2306.03078 (2023).

[53] Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning Zheng, and Furu Wei.

2023. LongNet: Scaling transformers to 1,000,000,000 tokens. arXiv:2307.02486 [cs.CL] (2023).

[54] Tianyu Ding, Tianyi Chen, Haidong Zhu, Jiachen Jiang, Yiqi Zhong, Jinxin Zhou, Guangzhi Wang, Zhihui Zhu, Ilya

Zharkov, and Luming Liang. 2023. The efficiency spectrum of large language models: An algorithmic survey. arXiv

preprint arXiv:2312.00678 (2023).

[55] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu

Liu, et al. 2022. A survey on in-context learning. arXiv preprint arXiv:2301.00234 (2022).

[56] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://api.semanticscholar.org/CorpusID:256503945
https://arxiv.org/abs/2103.14899
https://arxiv.org/abs/2305.14788
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2307.02486


110:28 M. Xu et al.

[57] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi

Zhou, Adams Wei Yu, Orhan Firat, et al. 2022. GLaM: Efficient scaling of language models with mixture-of-experts.

In Proceedings of the International Conference on Machine Learning. 5547–5569.

[58] Julian Eisenschlos, Maharshi Gor, Thomas Mueller, and William Cohen. 2021. MATE: Multi-view attention for table

transformer efficiency. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.

7606–7619.

[59] Saar Eliad, Ido Hakimi, Alon De Jagger, Mark Silberstein, and Assaf Schuster. 2021. Fine-tuning giant neural networks

on commodity hardware with automatic pipeline model parallelism. In Proceedings of the USENIX Annual Technical

Conference. 381–396.

[60] Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, and Cedric Archambeau. 2022. Memory efficient

continual learning with transformers. Advances in Neural Information Processing Systems 35 (2022), 10629–10642.

[61] FairScale Authors. 2021. FairScale: A general purpose modular PyTorch library for high performance and large scale

training. GitHub. Retrieved December 3, 2024 from https://github.com/facebookresearch/fairscale

[62] Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal Shankar. 2023. Data

filtering networks. arXiv:2309.17425 [cs.AI] (2023). https://arxiv.org/abs/2309.17425

[63] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers: Scaling to trillion parameter models with

simple and efficient sparsity. Journal of Machine Learning Research 23, 1 (2022), 5232–5270.

[64] Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu, and Jiwu Shu. 2023. Mobius: Fine tuning large-scale

models on commodity GPU servers. In Proceedings of the 28th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Vol. 2. 489–501.

[65] Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxiang Liu, Weichong

Yin, Shikun Feng, et al. 2023. ERNIE-ViLG 2.0: Improving text-to-image diffusion model with knowledge-enhanced

mixture-of-denoising-experts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

10135–10145.

[66] Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. 2023. A practical survey on faster and lighter trans-

formers. ACM Computing Surveys 55, 14s (2023), 1–40.

[67] Elias Frantar and Dan Alistarh. 2022. Optimal brain compression: A framework for accurate post-training quantiza-

tion and pruning. Advances in Neural Information Processing Systems 35 (2022), 4475–4488.

[68] Elias Frantar and Dan Alistarh. 2023. SparseGPT: Massive language models can be accurately pruned in one-shot. In

Proceedings of the International Conference on Machine Learning. 10323–10337.

[69] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. GPTQ: Accurate post-training quantization

for generative pre-trained transformers. arXiv preprint arXiv:2210.17323 (2022).

[70] Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 2023. Breaking the Sequential Dependency of LLM Inference Using

Lookahead Decoding. Retrieved December 2, 2024 from https://lmsys.org/blog/2023-11-21-lookahead-decoding/

[71] Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. 2023. Specializing smaller language models towards

multi-step reasoning. arXiv preprint arXiv:2301.12726 (2023).

[72] Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. 2023. On the effectiveness of

parameter-efficient fine-tuning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 12799–12807.

[73] Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten,

Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. 2023. DataComp: In search of the next generation of multi-

modal datasets. arXiv:2304.14108 [cs.CV] (2023). https://arxiv.org/abs/2304.14108

[74] Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. 2023. MegaBlocks: Efficient sparse training with

mixture-of-experts. In Proceedings of Machine Learning and Systems 5 (MLSys’23).

[75] Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. 2023. In-context autoencoder for context com-

pression in a large language model. arXiv:2307.06945 [cs.CL] (2023).

[76] Georgi Gerganov. 2023. llama.cpp: A C++ Implementation of the Large Language Models. Retrieved December 3,

2024 from https://github.com/ggerganov/llama.cpp

[77] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, and Ishan

Misra. 2023. ImageBind: One embedding space to bind them all. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition. 15180–15190.

[78] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. 2019. Efficient training of BERT by pro-

gressively stacking. In Proceedings of the International Conference on Machine Learning. 2337–2346.

[79] Saurabh Goyal, Anamitra R. Choudhury, Saurabh M. Raje, Venkatesan T. Chakaravarthy, Yogish Sabharwal,

and Ashish Verma. 2020. PoWER-BERT: Accelerating BERT Inference via progressive word-vector elimination.

arXiv:2001.08950 [cs.LG] (2020).

[80] Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Herve Jegou, and Matthijs Douze.

2021. LeViT: A vision transformer in ConvNet’s clothing for faster inference. arXiv:2104.01136 [cs.CV] (2021).

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://github.com/facebookresearch/fairscale
https://arxiv.org/abs/2309.17425
https://arxiv.org/abs/2309.17425
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://arxiv.org/abs/2304.14108
https://arxiv.org/abs/2304.14108
https://arxiv.org/abs/2307.06945
https://github.com/ggerganov/llama.cpp
https://arxiv.org/abs/2001.08950
https://arxiv.org/abs/2104.01136


Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:29

[81] Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint

arXiv:2312.00752 (2023).

[82] Albert Gu, Karan Goel, and Christopher Ré. 2022. Efficiently modeling long sequences with structured state spaces.

arXiv:2111.00396 (2022).

[83] Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. 2021. On the transformer growth for

progressive BERT training. In Proceedings of the 2021 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies. 5174–5180.

[84] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2023. Knowledge distillation of large language models. arXiv

preprint arXiv:2306.08543 (2023).

[85] Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang, Fan Yang, Yunxin Liu, Minyi Guo, and Yuhao

Zhu. 2023. OliVe: Accelerating large language models via hardware-friendly outlier-victim pair quantization. In Pro-

ceedings of the 50th Annual International Symposium on Computer Architecture (ISCA’23). ACM, New York, NY, USA.

https://doi.org/10.1145/3579371.3589038

[86] Liwei Guo, Wonkyo Choe, and Felix Xiaozhu Lin. 2023. STI: Turbocharge NLP inference at the edge via elastic pipelin-

ing. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems, Vol. 2. 791–803.

[87] Yangyang Guo, Guangzhi Wang, and Mohan Kankanhalli. 2023. PELA: Learning parameter-efficient models with

low-rank approximation. arXiv preprint arXiv:2310.10700 (2023).

[88] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H. Oh, Yeonhong Park, Yoonho Song, Jung-Hun Park, Sanghee

Lee, Kyoung Park, Jae W. Lee, et al. 2020. A3: Accelerating attention mechanisms in neural networks with approxi-

mation. arXiv:2002.10941 [cs.DC] (2020). https://arxiv.org/abs/2002.10941

[89] Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. 2024. LM-Infinite: Simple on-the-fly

length generalization for large language models. In Proceedings of the 12th International Conference on Learning

Representations (ICLR’24).

[90] Song Han, Huizi Mao, and William J. Dally. 2016. Deep compression: Compressing deep neural networks with prun-

ing, trained quantization and Huffman coding. arXiv:1510.00149 [cs.CV] (2016). https://arxiv.org/abs/1510.00149

[91] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning both weights and connections for efficient neural

networks. arXiv:1506.02626 [cs.NE] (2015). https://arxiv.org/abs/1506.02626

[92] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024. LoRA+: Efficient low rank adaptation of large models.

arXiv:2402.12354 (2024).

[93] Bobby He and Thomas Hofmann. 2023. Simplifying transformer blocks. arXiv preprint arXiv:2311.01906 (2023).

[94] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. 2022. Masked autoencoders

are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

16000–16009.

[95] Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. 2023. EfficientDM: Efficient quantization-aware fine-

tuning of low-bit diffusion models. arXiv preprint arXiv:2310.03270 (2023).

[96] Yingqing He, Shaoshu Yang, Haoxin Chen, Xiaodong Cun, Menghan Xia, Yong Zhang, Xintao Wang, Ran He, Qifeng

Chen, and Ying Shan. 2023. ScaleCrafter: Tuning-free higher-resolution visual generation with diffusion models.

arXiv preprint arXiv:2310.07702 (2023).

[97] Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022. Large language models are reasoning teachers. arXiv preprint

arXiv:2212.10071 (2022).

[98] Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Yuhan Dong, and Yu Wang. 2023.

FlashDecoding++: Faster large language model inference on GPUs. arXiv preprint arXiv:2311.01282 (2023).

[99] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay Krishna,

Chen-Yu Lee, and Tomas Pfister. 2023. Distilling step-by-step! Outperforming larger language models with less train-

ing data and smaller model sizes. arXiv preprint arXiv:2305.02301 (2023).

[100] Zi-Yuan Hu, Yanyang Li, Michael R. Lyu, and Liwei Wang. 2023. VL-PET: Vision-and-language parameter-efficient

tuning via granularity control. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 3010–

3020.

[101] Jane Huang and Kevin Williams. 2023. GPT-4 for creative writing: A case study of content generation in digital media.

arXiv preprint arXiv:2305.11234 (2023).

[102] Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. 2021. Efficient attentions for long document

summarization. arXiv preprint arXiv:2104.02112 (2021).

[103] Tao Huang, Lang Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. 2022. LightViT: Towards light-weight

convolution-free vision transformers. arXiv:2207.05557 [cs.CV] (2022). https://arxiv.org/abs/2207.05557

[104] Xijie Huang, Li Lyna Zhang, Kwang-Ting Cheng, and Mao Yang. 2023. Boosting LLM reasoning: Push the limits of

few-shot learning with reinforced in-context pruning. arXiv:2312.08901 [cs.CL] (2023).

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://doi.org/10.1145/3579371.3589038
https://arxiv.org/abs/2002.10941
https://arxiv.org/abs/2002.10941
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/2207.05557
https://arxiv.org/abs/2207.05557
https://arxiv.org/abs/2312.08901


110:30 M. Xu et al.

[105] Yukun Huang, Yanda Chen, Zhou Yu, and Kathleen McKeown. 2022. In-context learning distillation: Transferring

few-shot learning ability of pre-trained language models. arXiv preprint arXiv:2212.10670 (2022).

[106] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Seffi Naor, and Daniel Soudry. 2021. Accelerated sparse neural

training: A provable and efficient method to find N:M transposable masks. arXiv:2102.08124 [cs.AI] (2021).

[107] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin Jose, Prabhat

Ram, et al. 2023. Tutel: Adaptive mixture-of-experts at scale. Microsoft. Retrieved December 3, 2024 from https://

mlsys.org/media/mlsys-2023/Slides/2477.pdf

[108] Maor Ivgi, Uri Shaham, and Jonathan Berant. 2023. Efficient long-text understanding with short-text models. Trans-

actions of the Association for Computational Linguistics 11 (2023), 284–299.

[109] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowdhury. 2023. Oobleck: Resilient distributed train-

ing of large models using pipeline templates. In Proceedings of the 29th Symposium on Operating Systems Principles.

382–395.

[110] Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet, Saeed Maleki, Youshan Miao, Madanlal Musu-

vathi, Todd Mytkowicz, and Olli Saarikivi. 2022. Breaking the computation and communication abstraction barrier

in distributed machine learning workloads. In Proceedings of the 27th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems. 402–416.

[111] Xianyan Jia, Le Jiang, Ang Wang, Wencong Xiao, Ziji Shi, Jie Zhang, Xinyuan Li, Langshi Chen, Yong Li, Zhen

Zheng, et al. 2022. Whale: Efficient giant model training over heterogeneous GPUs. In Proceedings of the USENIX

Annual Technical Conference. 673–688.

[112] Chaoya Jiang, Haiyang Xu, Chenliang Li, Ming Yan, Wei Ye, Shikun Zhang, Bin Bi, and Songfang Huang. 2022.

TRIPS: Efficient vision-and-language pre-training with text-relevant image patch selection. In Proceedings of the

2022 Conference on Empirical Methods in Natural Language Processing. 4084–4096.

[113] Chaoya Jiang, Haiyang Xu, Wei Ye, Qinghao Ye, Chenliang Li, Ming Yan, Bin Bi, Shikun Zhang, Ji Zhang, and Fei

Huang. 2023. COPA: Efficient vision-language pre-training through collaborative object-and patch-text alignment.

In Proceedings of the 31st ACM International Conference on Multimedia. 4480–4491.

[114] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023. LLMLingua: Compressing prompts for

accelerated inference of large language models. arXiv:2310.05736 [cs.CL] (2023).

[115] Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Binhang Yuan. 2023. HexGen: Generative inference

of foundation model over heterogeneous decentralized environment. arXiv preprint arXiv:2311.11514 (2023).

[116] Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. 2023. PolySketchFormer: Fast transformers via sketches for

polynomial kernels. arXiv preprint arXiv:2310.01655 (2023).

[117] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Rad-

ford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361

(2020).

[118] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. 2020. Transformers are RNNs: Fast

autoregressive transformers with linear attention. In Proceedings of the International Conference on Machine Learning.

5156–5165.

[119] Ayush Kaushal, Tejas Vaidhya, and Irina Rish. 2023. LoRD: Low rank decomposition of monolingual code LLMs for

one-shot compression. arXiv preprint arXiv:2309.14021 (2023).

[120] Gyuwan Kim and Kyunghyun Cho. 2021. Length-adaptive transformer: Train once with length drop, use anytime

with search. arXiv:2010.07003 [cs.CL] (2021).

[121] Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon, and Dongsoo Lee. 2023.

Memory-efficient fine-tuning of compressed large language models via sub-4-bit integer quantization. arXiv preprint

arXiv:2305.14152 (2023).

[122] Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W. Mahoney, and Kurt

Keutzer. 2023. SqueezeLLM: Dense-and-sparse quantization. arXiv preprint arXiv:2306.07629 (2023).

[123] Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc, Grace Dinh, Qijing

Huang, Kurt Keutzer, Michael W. Mahoney, et al. 2023. Full stack optimization of transformer inference: A survey.

arXiv preprint arXiv:2302.14017 (2023).

[124] Shine Kim, Yunho Jin, Gina Sohn, Jonghyun Bae, Tae Jun Ham, and Jae W. Lee. 2021. Behemoth: A flash-centric train-

ing accelerator for extreme-scale DNNs. In Proceedings of the 19th USENIX Conference on File and Storage Technologies.

371–385.

[125] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-

head, Alexander C. Berg, Wan-Yen Lo et al. 2023. Segment anything. arXiv:2304.02643 (2023).

[126] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The efficient transformer. In Proceedings of the

International Conference on Learning Representations.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2102.08124
https://mlsys.org/media/mlsys-2023/Slides/2477.pdf
https://arxiv.org/abs/2310.05736
https://arxiv.org/abs/2010.07003


Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:31

[127] Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie, Yi Tay,

Mostafa Dehghani, and Neil Houlsby. 2023. Sparse upcycling: Training mixture-of-experts from dense checkpoints.

arXiv:2212.05055 [cs.LG] (2023).

[128] Rui Kong, Yuanchun Li, Qingtian Feng, Weijun Wang, Linghe Kong, and Yunxin Liu. 2023. Serving MoE models on

resource-constrained edge devices via dynamic expert swapping. arXiv preprint arXiv:2308.15030 (2023).

[129] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Mengshu Sun, Wei Niu, Xuan Shen, Geng Yuang, Bin Ren,

Minghai Qin, et al. 2022. SPViT: Enabling faster vision transformers via soft token pruning. arXiv:2112.13890 [cs.CV]

(2022).

[130] Juil Koo, Seungwoo Yoo, Minh Hieu Nguyen, and Minhyuk Sung. 2023. Salad: Part-level latent diffusion for 3D

shape generation and manipulation. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

14441–14451.

[131] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad Shoeybi,

and Bryan Catanzaro. 2023. Reducing activation recomputation in large transformer models. In Proceedings of the

Machine Learning and Systems Conference (MLSys’23).

[132] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang,

and Ion Stoica. 2023. Efficient memory management for large language model serving with PagedAttention. In Pro-

ceedings of the 29th Symposium on Operating Systems Principles. 611–626.

[133] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M. Rush. 2021. Block pruning for faster transformers.

arXiv preprint arXiv:2109.04838 (2021).

[134] Joel Lamy-Poirier. 2023. Breadth-first pipeline parallelism. In Proceedings of the Machine Learning and Systems Con-

ference (MLSys’23).

[135] Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. 2023. OWQ: Lessons learned from acti-

vation outliers for weight quantization in large language models. arXiv preprint arXiv:2306.02272 (2023).

[136] Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. 2023. FlexRound: Learnable rounding based on

element-wise division for post-training quantization. arXiv preprint arXiv:2306.00317 (2023).

[137] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas

Carlini. 2022. Deduplicating training data makes language models better. In Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers). 8424–8445.

[138] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning.

arXiv preprint arXiv:2104.08691 (2021).

[139] Yaniv Leviathan, Matan Kalman, and Y. Matias. 2022. Fast inference from transformers via speculative decoding. In

Proceedings of the International Conference on Machine Learning. https://api.semanticscholar.org/CorpusID:254096365

[140] Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, and Jianfeng Gao. 2023. Multimodal

foundation models: From specialists to general-purpose assistants. arXiv preprint arXiv:2309.10020 (2023).

[141] Changlin Li, Bohan Zhuang, Guangrun Wang, Xiaodan Liang, Xiaojun Chang, and Yi Yang. 2022. Automated pro-

gressive learning for efficient training of vision transformers. arXiv:2203.14509 [cs.CV] (2022). https://arxiv.org/abs/

2203.14509

[142] Yujia Li, David Choi, Junyong Chung, Nate Kushman, Julian Schrittwieser, Remi Leblond, Tom Eccles, James Keeling,

Felix Gimeno, Augustin Dal Lago, et al. 2022. Competition-level code generation with AlphaCode. Science 378, 6624

(2022), 1107–1114.

[143] Kai Li, Runxuan Yang, and Xiaolin Hu. 2022. An efficient encoder-decoder architecture with top-down attention for

speech separation. arXiv preprint arXiv:2209.15200 (2022).

[144] Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang Liu, Boxiang Wang, and Yang You.

2023. Colossal-AI: A unified deep learning system for large-scale parallel training. In Proceedings of the 52nd Interna-

tional Conference on Parallel Processing. ACM, New York, NY, USA, 766–775.

[145] Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. 2023. Sequence parallelism: Long sequence

training from system perspective. In Proceedings of the 61st Annual Meeting of the Association for Computational

Linguistics. 2391–2404.

[146] Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi Wang, and Xulong Tang. 2022. SmartFRZ: An efficient train-

ing framework using attention-based layer freezing. In Proceedings of the 11th International Conference on Learning

Representations.

[147] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer. 2023.

Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

17535–17545.

[148] Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov, and Jian Ren. 2023.

SnapFusion: Text-to-image diffusion model on mobile devices within two seconds. arXiv preprint arXiv:2306.00980

(2023).

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2212.05055
https://arxiv.org/abs/2112.13890
https://api.semanticscholar.org/CorpusID:254096365
https://arxiv.org/abs/2203.14509
https://arxiv.org/abs/2203.14509


110:32 M. Xu et al.

[149] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu, Wenxing Xu, Xiang

Wang, Yi Sun, et al. 2024. Personal LLM agents: Insights and survey about the capability, efficiency and security.

arXiv preprint arXiv:2401.05459 (2024).

[150] Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng Gao, and Guodong Guo. 2022. Q-ViT: Accurate and fully

quantized low-bit vision transformer. Advances in Neural Information Processing Systems 35 (2022), 34451–34463.

[151] Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo Zhao. 2023. LoftQ:

LoRA-fine-tuning-aware quantization for large language models. arXiv preprint arXiv:2310.08659 (2023).

[152] Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023. LoSparse:

Structured compression of large language models based on low-rank and sparse approximation. arXiv preprint

arXiv:2306.11222 (2023).

[153] Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren. 2022.

EfficientFormer: Vision transformers at MobileNet speed. arXiv:2206.01191 [cs.CV] (2022).

[154] Zhikai Li and Qingyi Gu. 2023. I-ViT: Integer-only quantization for efficient vision transformer inference. In Proceed-

ings of the IEEE/CVF International Conference on Computer Vision. 17065–17075.

[155] Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023. Less is more: Task-aware

layer-wise distillation for language model compression. In Proceedings of the International Conference on Machine

Learning. 20852–20867.

[156] Baohao Liao, Yan Meng, and Christof Monz. 2023. Parameter-efficient fine-tuning without introducing new latency.

arXiv preprint arXiv:2305.16742 (2023).

[157] Baohao Liao, Shaomu Tan, and Christof Monz. 2023. Make your pre-trained model reversible: From parameter to

memory efficient fine-tuning. arXiv preprint arXiv:2306.00477 (2023).

[158] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang,

Chuang Gan, and Song Han. 2023. AWQ: Activation-aware weight quantization for LLM compression and accelera-

tion. arXiv preprint arXiv:2306.00978 (2023).

[159] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. 2022. A survey of transformers. AI Open 3 (2022), 111–

132.

[160] Guisheng Liu, Yi Li, Zhengcong Fei, Haiyan Fu, Xiangyang Luo, and Yanqing Guo. 2023. Prefix-diffusion: A light-

weight diffusion model for diverse image captioning. arXiv preprint arXiv:2309.04965 (2023).

[161] Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. 2023. QLLM: Accurate and effi-

cient low-bitwidth quantization for large language models. arXiv:2310.08041 [cs.CL] (2023).

[162] Jihao Liu, Xin Huang, Jinliang Zheng, Yu Liu, and Hongsheng Li. 2023. MixMAE: Mixed and masked autoencoder

for efficient pretraining of hierarchical vision transformers. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 6252–6261.

[163] Juncai Liu, Jessie Hui Wang, and Yimin Jiang. 2023. Janus: A unified distributed training framework for sparse

mixture-of-experts models. In Proceedings of the 2023 ACM SIGCOMM Conference. 486–498.

[164] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. 2022. Pseudo numerical methods for diffusion models on manifolds.

arXiv preprint arXiv:2202.09778 (2022).

[165] Shih-Yang Liu, Zechun Liu, and Kwang-Ting Cheng. 2023. Oscillation-free quantization for low-bit vision transform-

ers. arXiv preprint arXiv:2302.02210 (2023).

[166] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and

Min-Hung Chen. 2024. DoRA: Weight-decomposed low-rank adaptation. arXiv:2402.09353 [cs] (2024). http://arxiv.

org/abs/2402.09353

[167] Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. 2023. EfficientViT: Memory

efficient vision transformer with cascaded group attention. arXiv:2305.07027 [cs.CV] (2023). https://arxiv.org/abs/

2305.07027

[168] Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu, Jie Tang,

Joey Gonzalez, et al. 2022. GACT: Activation compressed training for generic network architectures. In Proceedings

of the International Conference on Machine Learning. 14139–14152.

[169] Yi Liu, Yun Ma, Xusheng Xiao, Tao Xie, and Xuanzhe Liu. 2023. LegoDroid: flexible Android app decomposition and

instant installation. Sci. China Inf. Sci. 66, 4 (2023). DOI:https://doi.org/10.1007/S11432-021-3528-7

[170] Yue Liu, Christos Matsoukas, Fredrik Strand, Hossein Azizpour, and Kevin Smith. 2023. PatchDropout: Economiz-

ing vision transformers using PatchDropout. In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision. 3953–3962.

[171] Yuqi Liu, Luhui Xu, Pengfei Xiong, and Qin Jin. 2023. Token mixing: Parameter-efficient transfer learning from image-

language to video-language. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 1781–1789.

[172] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis, and An-

shumali Shrivastava. 2023. Scissorhands: Exploiting the persistence of importance hypothesis for LLM KV cache

compression at test time. arXiv:2305.17118 [cs.LG] (2023).

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2206.01191
https://arxiv.org/abs/2310.08041
http://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2305.07027
https://arxiv.org/abs/2305.07027
https://doi.org/10.1007/S11432-021-3528-7
https://arxiv.org/abs/2305.17118


Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:33

[173] Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi, Raghura-

man Krishnamoorthi, and Vikas Chandra. 2023. LLM-QAT: Data-free quantization aware training for large language

models. arXiv preprint arXiv:2305.17888 (2023).

[174] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang, Yuan-

dong Tian, Christoper Re, et al. 2023. DejaVu: Contextual sparsity for efficient LLMs at inference time. In Proceedings

of the International Conference on Machine Learning. 22137–22176.

[175] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. 2022. DPM-Solver: A fast ode solver

for diffusion probabilistic model sampling in around 10 steps. Advances in Neural Information Processing Systems 35

(2022), 5775–5787.

[176] Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang, Nicolas D. Lane, and Mengwei Xu. 2024.

Small language models: Survey, measurements, and insights. arXiv preprint arXiv:2409.15790 (2024).

[177] Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. LLM-Pruner: On the structural pruning of large language

models. arXiv preprint arXiv:2305.11627 (2023).

[178] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettle-

moyer. 2022. Mega: Moving average equipped gated attention. arXiv preprint arXiv:2209.10655 (2022).

[179] Sachin Mehta and Mohammad Rastegari. 2022. MobileViT: Light-weight, general-purpose, and mobile-friendly vision

transformer. arXiv:2110.02178 [cs.CV] (2022).

[180] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024. PiSSA: Principal singular values and singular vectors adapta-

tion of large language models. arXiv:2404.02948 [cs] (2024). http://arxiv.org/abs/2404.02948

[181] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim. 2021.

AdaViT: Adaptive vision transformers for efficient image recognition. arXiv:2111.15668 [cs.CV] (2021).

[182] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqi Chen, and Zhihao Jia. 2023. To-

wards efficient generative large language model serving: A survey from algorithms to systems. arXiv preprint

arXiv:2312.15234 (2023).

[183] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee Wong,

Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al 2023. SpecInfer: Accelerating generative large language model serving

with speculative inference and token tree verification. arXiv:2305.09781 [cs.CL] (2023).

[184] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia. 2023. SpotServe: Serving

generative large language models on preemptible instances. arXiv preprint arXiv:2311.15566 (2023).

[185] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang, and Bin Cui. 2023. Galvatron:

Efficient transformer training over multiple GPUs using automatic parallelism. Proceedings of the VLDB Endowment

16, 3 (2023), 470–479.

[186] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2021. MetaICL: Learning to learn in context.

arXiv preprint arXiv:2110.15943 (2021).

[187] Amirkeivan Mohtashami and Martin Jaggi. 2023. Landmark attention: Random-access infinite context length for

transformers. arXiv preprint arXiv:2305.16300 (2023).

[188] Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. 2022. Multimodal contrastive

learning with LIMoE: The language-image mixture of experts. Advances in Neural Information Processing Systems 35

(2022), 9564–9576.

[189] Pranav Ajit Nair, Sukomal Pal, and Pradeepika Verm. 2023. Domain aligned prefix averaging for domain generaliza-

tion in abstractive summarization. arXiv preprint arXiv:2305.16820 (2023).

[190] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Anand Kor-

thikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale

language model training on GPU clusters using Megatron-LM. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage, and Analysis. 1–15.

[191] Piotr Nawrot, Jan Chorowski, Adrian Łańcucki, and Edoardo M. Ponti. 2022. Efficient transformers with dynamic

token pooling. arXiv preprint arXiv:2211.09761 (2022).

[192] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising diffusion probabilistic models. In Proceed-

ings of the International Conference on Machine Learning. 8162–8171.

[193] Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang, Jilong Xue, Lingxiao Ma, Gang Cao, and Bin Cui. 2023.

FlexMoE: Scaling large-scale sparse pre-trained model training via dynamic device placement. Proceedings of the

ACM on Management of Data 1, 1 (2023), Article 110, 19 pages.

[194] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. 2021. DNNFusion: Accelerating deep neural

networks execution with advanced operator fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference

on Programming Language Design and Implementation. 883–898.

[195] Georgii Sergeevich Novikov, Daniel Bershatsky, Julia Gusak, Alex Shonenkov, Denis Dimitrov, and Ivan Oseledets.

2023. Few-bit backward: Quantized gradients of activation functions for memory footprint reduction. In Proceedings

of the International Conference on Machine Learning. 26363–26381.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2110.02178
http://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2111.15668
https://arxiv.org/abs/2305.09781


110:34 M. Xu et al.

[196] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Forencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, et al. 2023. GPT-4 technical report. arXiv:2303.08774 [cs.CL] (2023).

[197] Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, and Soham De.

2023. Resurrecting recurrent neural networks for long sequences. arXiv preprint arXiv:2303.06349 (2023).

[198] Kazuki Osawa, Shigang Li, and Torsten Hoefler. 2023. PipeFisher: Efficient training of large language models using

pipelining and Fisher information matrices. In Proceedings of the Machine Learning and Systems Conference.

[199] Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios Tzimiropoulos,

and Brais Martinez. 2022. EdgeViTs: Competing light-weight CNNs on mobile devices with vision transformers.

arXiv:2205.03436 [cs.CV] (2022). https://arxiv.org/abs/2205.03436

[200] Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. 2022. ST-Adapter: Parameter-efficient image-to-

video transfer learning. Advances in Neural Information Processing Systems 35 (2022), 26462–26477.

[201] Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai, and Bohan Zhuang. 2021. Mesa: A memory-saving training

framework for transformers. arXiv preprint arXiv:2111.11124 (2021).

[202] Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T. Nguyen, Seungmin Lee, Jaesik Choi, Sam H. Noh, and Young-

Ri Choi. 2020. HetPipe: Enabling large DNN training on (whimpy) heterogeneous GPU clusters through integra-

tion of pipelined model parallelism and data parallelism. In Proceedings of the USENIX Annual Technical Conference.

307–321.

[203] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Inigo Goiri, Saeed Maleki, and Ricardo Bianchini. 2023.

Splitwise: Efficient generative LLM inference using phase splitting. arXiv preprint arXiv:2311.18677 (2023).

[204] William Peebles and Saining Xie. 2023. Scalable diffusion models with transformers. arXiv:2212.09748 [cs.CV] (2023).

https://arxiv.org/abs/2212.09748

[205] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi Cao, Xin

Cheng, Michael Chung, Matteo Grella, et al. 2023. RWKV: Reinventing RNNs for the transformer era. arXiv preprint

arXiv:2305.13048 (2023).

[206] Maciej Pióro, Kamil Ciebiera, Krystian Król, Jan Ludziejewski, Michal Krutul, Jakub Krajewski, Szymon Antoniak,

Piotr Milos, Marek Cygan, and Sebastian Jaszczur. 2024. MoE-Mamba: Efficient selective state space models with

mixture of experts. arXiv preprint arXiv:2401.04081 (2024).

[207] Koutilya Pnvr, Bharat Singh, Pallabi Ghosh, Behjat Siddiquie, and David Jacobs. 2023. LD-ZNet: A latent diffusion

approach for text-based image segmentation. In Proceedings of the IEEE/CVF International Conference on Computer

Vision. 4157–4168.

[208] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Er-

mon, and Christopher Re. 2023. Hyena hierarchy: Towards larger convolutional language models. arXiv preprint

arXiv:2302.10866 (2023).

[209] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm Levskaya, Jonathan

Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. 2023. Efficiently scaling transformer inference. In Proceedings of

the Machine Learning and Systems Conference.

[210] Guanghui Qin, Corby Rosset, Ethan C. Chau, Nikhil Rao, and Benjamin Van Durme. 2023. Nugget 2D: Dynamic

contextual compression for scaling decoder-only language models. arXiv:2310.02409 [cs.CL] (2023).

[211] Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han, Zhengyan Zhang, Yusheng Su, Zhiyuan Liu, Peng Li, Maosong

Sun, et al. 2022. Knowledge inheritance for pre-trained language models. In Proceedings of the 2022 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 3921–3937.

[212] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda

Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervi-

sion. In Proceedings of the International Conference on Machine Learning. 8748–8763.

[213] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero: Memory optimizations toward train-

ing trillion parameter models. In Proceedings of the International Conference for High Performance Computing, Net-

working, Storage, and Analysis (SC’20). IEEE, 1–16.

[214] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. 2021. DynamicViT: Efficient vision

transformers with dynamic token sparsification. arXiv:2106.02034 [cs.CV] (2021).

[215] Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas, Amnon Shashua, Kevin

Leyton-Brown, and Yoav Shoham. 2023. Parallel context windows for large language models. In Proceedings of the

61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 6383–6402.

[216] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia Zhang, Dong

Li, and Yuxiong He. 2021. ZeRO-Offload: Democratizing billion-scale model training. In Proceedings of the USENIX

Annual Technical Conference. 551–564.

[217] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, Andre Susano Pinto, Daniel

Keysers, and Neil Houlsby. 2021. Scaling vision with sparse mixture of experts. Advances in Neural Information

Processing Systems 34 (2021), 8583–8595.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2205.03436
https://arxiv.org/abs/2205.03436
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2310.02409
https://arxiv.org/abs/2106.02034


Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:35

[218] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. 2022. High-resolution image

synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 10684–10695.

[219] Rajarshi Saha, Varun Srivastava, and Mert Pilanci. 2023. Matrix compression via randomized low rank and low

precision factorization. arXiv preprint arXiv:2310.11028 (2023).

[220] Michael Santacroce, Zixin Wen, Yelong Shen, and Yuanzhi Li. 2023. What matters in the structured pruning of gen-

erative language models? arXiv preprint arXiv:2302.03773 (2023).

[221] Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy. 2022. Staged training for trans-

former language models. In Proceedings of the International Conference on Machine Learning. 19893–19908.

[222] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou, Banghua Zhu,

Lianmin Zheng, Kurt Keutzer, et al. 2023. S-LoRA: Serving thousands of concurrent LoRA adapters. arXiv preprint

arXiv:2311.03285 (2023).

[223] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi Chen,

Clark Barrett, Joseph E. Gonzalez, et al. 2023. FlexGen: High-throughput generative inference of large language

models with a single GPU. In Proceedings of the International Conference on Machine Learning. 31094–31116.

[224] Dachuan Shi, Chaofan Tao, Ying Jin, Zhendong Yang, Chun Yuan, and Jiaqi Wang. 2023. UPop: Unified and progres-

sive pruning for compressing vision-language transformers. arXiv preprint arXiv:2301.13741 (2023).

[225] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion implicit models. arXiv preprint

arXiv:2010.02502 (2020).

[226] Jaeyong Song, Jinkyu Yim, Jaewon Jung, Hongsun Jang, Hyung-Jin Kim, Youngsok Kim, and Jinho Lee. 2023. Optimus-

CC: Efficient large NLP model training with 3D parallelism aware communication compression. In Proceedings of the

28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Vol.

2. 560–573.

[227] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. 2023. PowerInfer: Fast large language model serving with a

consumer-grade GPU. arXiv:2312.12456 [cs.LG] (2023).

[228] Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. 2023. A simple and effective pruning approach for large

language models. arXiv preprint arXiv:2306.11695 (2023).

[229] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu Wei. 2023.

Retentive network: A successor to transformer for large language models. arXiv preprint arXiv:2307.08621 (2023).

[230] Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu. 2023. SpecTR: Fast

speculative decoding via optimal transport. In Proceedings of the Workshop on Efficient Systems for Foundation Models

@ ICML2023. https://openreview.net/forum?id=d0mGsaheuT

[231] Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang, Marco Donato, Victor Sanh, Paul N.

Whatmough, Alexander M. Rush, David Brooks, et al. 2021. EdgeBERT: Sentence-level energy optimizations for

latency-aware multi-task NLP inference. arXiv:2011.14203 [cs.AR] (2021). https://arxiv.org/abs/2011.14203

[232] Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong. 2022. Compression

of generative pre-trained language models via quantization. arXiv preprint arXiv:2203.10705 (2022).

[233] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali, and Quoqing

Harry Xu. 2023. Bamboo: Making preemptible instances resilient for affordable training of large DNNs. In Proceedings

of the 20th USENIX Symposium on Networked Systems Design and Implementation. 497–513.

[234] Lin Tian, Xiuzhen Zhang, and Jey Han Lau. 2023. MetaTroll: Few-shot detection of state-sponsored trolls with trans-

former adapters. In Proceedings of the 2023 ACM Web Conference. 1743–1753.

[235] Inar Timiryasov and Jean-Loup Tastet. 2023. Baby llama: Knowledge distillation from an ensemble of teachers trained

on a small dataset with no performance penalty. arXiv preprint arXiv:2308.02019 (2023).

[236] Katrin Tomanek, Vicky Zayats, Dirk Padfield, Kara Vaillancourt, and Fadi Biadsy. 2021. Residual adapters for

parameter-efficient ASR adaptation to atypical and accented speech. arXiv preprint arXiv:2109.06952 (2021).

[237] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve Jegou. 2012.

Training data-efficient image transformers and distillation through attention arXiv:2012.12877 (2012).

[238] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,

Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models.

arXiv preprint arXiv:2307.09288 (2023).

[239] Hieu Tran, Zhichao Yang, Zonghai Yao, and Hong Yu. 2023. BioInstruct: Instruction tuning of large language models

for biomedical natural language processing. arXiv preprint arXiv:2310.19975 (2023).

[240] Alexander Tsvetkov and Alon Kipnis. 2023. EntropyRank: Unsupervised keyphrase extraction via side-information

optimization for language model-based text compression. In Proceedings of the Workshop on Neural Compression:

From Information Theory to Applications (ICML’23).

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2312.12456
https://openreview.net/forum?id=d0mGsaheuT
https://arxiv.org/abs/2011.14203
https://arxiv.org/abs/2011.14203


110:36 M. Xu et al.

[241] Chandra Shekhara Kaushik Valmeekam, Krishna Narayanan, Dileep Kalathil, Jean-Francois Chamberland, and Srini-

vas Shakkottai. 2023. LLMZip: Lossless text compression using large language models. arXiv:2306.04050 [cs.IT] (2023).

[242] Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. 2023. FastViT: A fast hybrid

vision transformer using structural reparameterization. arXiv:2303.14189 [cs.CV] (2023). https://arxiv.org/abs/2303.

14189

[243] Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, and Oncel Tuzel. 2024. Mo-

bileCLIP: Fast image-text models through multi-modal reinforced training. arXiv:2311.17049 [cs.CV] (2024). https:

//arxiv.org/abs/2311.17049

[244] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. Advances in Neural Information Processing Systems 30 (2017), 1–11.

[245] Yixin Wan, Kuan-Hao Huang, and Kai-Wei Chang. 2023. PIP: Parse-instructed prefix for syntactically controlled

paraphrase generation. arXiv preprint arXiv:2305.16701 (2023).

[246] Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan, Yi Zhu, Quanlu

Zhang, et al. 2023. Efficient large language models: A survey. arXiv preprint arXiv:2312.03863 1 (2023).

[247] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang, Ruiping Wang, Yi

Wu, and Furu Wei. 2023. BitNet: Scaling 1-bit transformers for large language models. arXiv preprint arXiv:2310.11453

(2023).

[248] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. SpAtten: Efficient sparse attention architecture with cascade

token and head pruning. In Proceedings of the 2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA’21). IEEE. https://doi.org/10.1109/hpca51647.2021.00018

[249] Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky, Rogerio Feris, David

Daniel Cox, Zhangyang Wang, and Yoon Kim. 2022. Learning to grow pretrained models for efficient transformer

training. In Proceedings of the 11th International Conference on Learning Representations.

[250] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Linformer: Self-attention with linear

complexity. arXiv preprint arXiv:2006.04768 (2020).

[251] Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi, Blake Hechtman, Dehao Chen, Karthik Srinivasa

Murthy, Marcello Maggioni, Qiao Zhang, et al. 2023. Overlap communication with dependent computation via de-

composition in large deep learning models. In Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Vol. 1. 93–106.

[252] Xuan Wang, Guanhong Wang, Wenhao Chai, Jiayu Zhou, and Gaoang Wang. 2023. User-aware prefix-tuning is a

good learner for personalized image captioning. arXiv preprint arXiv:2312.04793 (2023).

[253] Xudong Wang, Li Lyna Zhang, Yang Wang, and Mao Yang. 2022. Towards efficient vision transformer inference: A

first study of transformers on mobile devices. In Proceedings of the 23rd Annual International Workshop on Mobile

Computing Systems and Applications. 1–7.

[254] Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, and Tiejun Huang. 2023. SegGPT: Segmenting

everything in context. arXiv:2304.03284 (2023).

[255] Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Guo, Ahmed Hassan Awadallah,

and Jianfeng Gao. 2022. AdaMix: Mixture-of-adaptations for parameter-efficient model tuning. arXiv preprint

arXiv:2210.17451 (2022).

[256] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, T. S. Eugene Ng, and Yida Wang. 2023. GEMINI:

Fast failure recovery in distributed training with in-memory checkpoints. In Proceedings of the 29th Symposium on

Operating Systems Principles. 364–381.

[257] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny

Zhou. 2022. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information

Processing Systems 35 (2022), 24824–24837.

[258] Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xianglong Liu. 2023.

Outlier Suppression+: Accurate quantization of large language models by equivalent and optimal shifting and scaling.

arXiv:2304.09145 [cs.CL] (2023).

[259] Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, and Xian-

glong Liu. 2022. Outlier Suppression: Pushing the limit of low-bit transformer language models. Advances in Neural

Information Processing Systems 35 (2022), 17402–17414.

[260] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu, Yaqin

Zhang, and Yunxin Liu. 2023. Empowering LLM to use smartphone for intelligent task automation. arXiv preprint

arXiv:2308.15272 (2023).

[261] Qizhen Weng, Wencong Xiao, Yinghao Yu, and others. 2022. MLaaS in the wild: Workload analysis and scheduling in

large-scale heterogeneous GPU clusters. In Proceedings of the 19th USENIX Symposium on Networked Systems Design

and Implementation. 945–960.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2306.04050
https://arxiv.org/abs/2303.14189
https://arxiv.org/abs/2303.14189
https://arxiv.org/abs/2311.17049
https://arxiv.org/abs/2311.17049
https://doi.org/10.1109/hpca51647.2021.00018
https://arxiv.org/abs/2304.09145


Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:37

[262] David Wingate, Mohammad Shoeybi, and Taylor Sorensen. 2022. Prompt compression and contrastive conditioning

for controllability and toxicity reduction in language models. arXiv:2210.03162 [cs.CL] (2022).

[263] Bingyang Wu, Yinmin Zhong, Zili Zhang, Shengyu Liu, Fangyue Liu, Yuanhang Sun, Gang Huang, Xuanzhe Liu, and

Xin Jin. 2023. Fast distributed inference serving for large language models. arXiv preprint arXiv:2305.05920 (2023).

[264] Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xuanzhe Liu, and Xin Jin. 2024. dLoRA: Dynamically orchestrat-

ing requests and adapters for LoRA LLM serving. In Proceedings of the 18th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’24). 911–927.

[265] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona

Aga Behram, James Huang, Charles Bai, et al. 2022. Sustainable AI: Environmental implications, challenges and

opportunities. In Proceedings of the Machine Learning and Systems Conference. 795–813.

[266] Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, and Yuxiong He. 2023. Understanding INT4 quanti-

zation for language models: Latency speedup, composability, and failure cases. In Proceedings of the International

Conference on Machine Learning. 37524–37539.

[267] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. 2023. Sheared llama: Accelerating language model

pre-training via structured pruning. arXiv preprint arXiv:2310.06694 (2023).

[268] Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao Huang. 2022. Vision transformer with deformable attention.

arXiv:2201.00520 [cs.CV] (2022).

[269] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. 2023. SmoothQuant: Accurate

and efficient post-training quantization for large language models. arXiv:2211.10438 [cs.CL] (2023).

[270] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. 2023. Efficient streaming language models

with attention sinks. arXiv preprint arXiv:2309.17453 (2023).

[271] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. 2020. DeeBERT: Dynamic early exiting for accelerating

BERT inference. arXiv preprint arXiv:2004.12993 (2020).

[272] Daliang Xu, Wangsong Yin, Xin Jin, Ying Zhang, Shiyun Wei, Mengwei Xu, and Xuanzhe Liu. 2023. LLMCad: Fast

and scalable on-device large language model inference. arXiv:2309.04255 [cs.NI] (2023).

[273] Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei Xu, and Xuanzhe Liu. 2024. Empowering

1000 tokens/second on-device LLM prefilling with mllm-NPU. arXiv preprint arXiv:2407.05858 (2024).

[274] Guanyu Xu, Jiawei Hao, Li Shen, Han Hu, Yong Luo, Hui Lin, and Jialie Shen. 2023. LGViT: Dynamic early exiting for

accelerating vision transformer. In Proceedings of the 31st ACM International Conference on Multimedia. 9103–9114.

[275] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and Xuanzhe Liu. 2019. A first look at deep

learning apps on smartphones. In Proceedings of the World Wide Web Conference. 2125–2136.

[276] Mingxue Xu, Yao Lei Xu, and Danilo P. Mandic. 2023. TensorGPT: Efficient compression of the embedding layer in

LLMs based on the tensor-train decomposition. arXiv preprint arXiv:2307.00526 (2023).

[277] Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao Zhao, Chen

Yang, Shihe Wang, et al. 2024. A survey of resource-efficient LLM and multimodal foundation models. arXiv preprint

arXiv:2401.08092 (2024).

[278] Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xiaopeng Zhang,

and Qi Tian. 2023. QA-LoRA: Quantization-aware low-rank adaptation of large language models. arXiv preprint

arXiv:2309.14717 (2023).

[279] Liu Xuanzhe, Yihao Zhao, Shufan Liu, Xiang Li, Xin Zhu Yibo Liu, and Xin Jin. 2024. MuxFlow: Efficient GPU sharing

in production-level clusters with more than 10,000 GPUs. Science China Information Sciences (2024). DOI:https://doi.

org/10.1007/s11432-024-4227-2

[280] Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou. 2020.

ProphetNet: Predicting future n-gram for sequence-to-sequence pre-training. arXiv:abs/2001.04083 (2020). https://api.

semanticscholar.org/CorpusID:210164665

[281] Bufang Yang, Lixing He, Neiwen Ling, Zhenyu Yan, Guoliang Xing, Xian Shuai, Xiaozhe Ren, and Xin Jiang. 2023.

EdgeFM: Leveraging foundation model for open-set learning on the edge. arXiv preprint arXiv:2311.10986 (2023).

[282] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and Xia Hu. 2023.

Harnessing the power of LLMs in practice: A survey on ChatGPT and beyond. arXiv:2304.13712 [cs.CL] (2023).

[283] Yuedong Yang, Hung-Yueh Chiang, Guihong Li, Diana Marculescu, and Radu Marculescu. 2023. Efficient low-rank

backpropagation for vision transformer adaptation. arXiv preprint arXiv:2309.15275 (2023).

[284] Yuting Yang, Wenqiang Lei, Pei Huang, Juan Cao, Jintao Li, and Tat-Seng Chua. 2023. A dual prompt learning frame-

work for few-shot dialogue state tracking. In Proceedings of the 2023 ACM Web Conference. 1468–1477.

[285] Shih yang Liu, Zechun Liu, Xijie Huang, Pingcheng Dong, and Kwang-Ting Cheng. 2023. LLM-FP4: 4-bit floating-

point quantized transformers. arXiv:2310.16836 [cs.CL] (2023).

[286] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022. ZeroQuant:

Efficient and affordable post-training quantization for large-scale transformers. Advances in Neural Information Pro-

cessing Systems 35 (2022), 27168–27183.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2210.03162
https://arxiv.org/abs/2201.00520
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2309.04255
https://doi.org/10.1007/s11432-024-4227-2
https://api.semanticscholar.org/CorpusID:210164665
https://arxiv.org/abs/2304.13712
https://arxiv.org/abs/2310.16836


110:38 M. Xu et al.

[287] Deming Ye, Yankai Lin, Yufei Huang, and Maosong Sun. 2021. TR-BERT: Dynamic token reduction for accelerating

BERT inference. arXiv:2105.11618 [cs.CL] (2021).

[288] Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei Xu. 2023. EdgeMoE: Fast on-device

inference of MoE-based large language models. arXiv preprint arXiv:2308.14352 (2023).

[289] Rongjie Yi, Xiang Li, Weikai Xie, Zhenyan Lu, Chenghua Wang, Ao Zhou, Shangguang Wang, Xiwen Zhang, and

Mengwei Xu. 2024. PhoneLM: An efficient and capable small language model family through principled pre-training.

arXiv preprint arXiv:2411.05046 (2024).

[290] Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. 2022. AdaViT: Adaptive

tokens for efficient vision transformer. arXiv:2112.07658 [cs.CV] (2022).

[291] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. 2022. Orca: A distributed

serving system for transformer-based generative models. In Proceedings of the 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’22). 521–538.

[292] Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang, Xin Yuan, Zeling Zhang, Xiang Li, Dingge Zhang, Hanzi Mei,

Xianqing Jia, et al. 2024. Mobile foundation model as firmware. In Proceedings of the 30th Annual International Confer-

ence on Mobile Computing and Networking (MobiCom’24). ACM, New York, NY, USA. https://doi.org/10.1145/3636534.

3649361

[293] Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun, Qiang Wu, Ji-

axiang Wu, and Bingzhe Wu. 2023. RPTQ: Reorder-based post-training quantization for large language models.

arXiv:2304.01089 [cs.CL] (2023).

[294] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham,

Anirudh Ravula, Qifan Wang, Li Yang, et al. 2020. Big Bird: Transformers for longer sequences. Advances in Neural

Information Processing Systems 33 (2020), 17283–17297.

[295] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. 2022.

Restormer: Efficient transformer for high-resolution image restoration. arXiv:2111.09881 [cs.CV] (2022).

[296] Shulin Zeng, Jun Liu, Guohao Dai, Xinhao Yang, Tianyu Fu, Hongyi Wang, Wenheng Ma, Hanbo Sun, Shiyao Li,

Xixiao Huang, et al. 2024. FlightLLM: Efficient large language model inference with a complete mapping flow on

FPGAs. arXiv:2401.03868 [cs.AR] (2024). https://arxiv.org/abs/2401.03868

[297] Mingshu Zhai, Jiaao He, Zixuan Ma, Zan Zong, Runqing Zhang, and Jidong Zhai. 2023. SmartMoE: Efficiently training

sparsely-activated models through combining offline and online parallelization. In Proceedings of the USENIX Annual

Technical Conference. 961–975.

[298] Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and Josh Susskind.

2021. An attention free transformer. arXiv preprint arXiv:2105.14103 (2021).

[299] Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang Zhang, Zizhong Chen, Xin Liu, and Yibo Xhu. 2023.

ByteTransformer: A high-performance transformer boosted for variable-length inputs. In Proceedings of the 2023

IEEE International Parallel and Distributed Processing Symposium (IPDPS’23). IEEE, 344–355.

[300] Jinchao Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. 2023. Draft & Verify:

Lossless large language model acceleration via self-speculative decoding. arXiv:abs/2309.08168 (2023). https://api.

semanticscholar.org/CorpusID:262013673

[301] Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang. 2023. Pruning meets low-rank

parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403 (2023).

[302] Qiyang Zhang, Xiangying Che, Yijie Chen, Xiao Ma, Mengwei Xu, and Schahram Dustdar. 2024. A comprehensive

deep learning library benchmark and optimal library selection. IEEE Transactions on Mobile Computing 23, 5 (2024),

5069–5082.

[303] Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and Tuo Zhao. 2022.

PLATON: Pruning large transformer models with upper confidence bound of weight importance. In Proceedings of

the International Conference on Machine Learning. PMLR, 26809–26823.

[304] Zining Zhang, Bingsheng He, and Zhenjie Zhang. 2023. Practical edge kernels for integer-only vision transformers

under post-training quantization. In Proceedings of the Machine Learning and Systems Conference.

[305] Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2022. MoEfication: Transformer

feed-forward layers are mixtures of experts. In Findings of the Association for Computational Linguistics: ACL 2022.

Association for Computational Linguistics. 877–890.

[306] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, LIanmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian,

Christopher Re, Clark Barrett, et al. 2023. H2O: Heavy-hitter oracle for efficient generative inference of large language

models. arXiv:2306.14048 [cs.LG] (2023).

[307] Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis, Trishul Chilimbi, Mu Li, and Xin Jin. 2023.

MiCS: Near-linear scaling for training gigantic model on public cloud. Proceedings of the VLDB Endowment 16, 1

(2023), 37–50.

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2105.11618
https://arxiv.org/abs/2112.07658
https://doi.org/10.1145/3636534.3649361
https://arxiv.org/abs/2304.01089
https://arxiv.org/abs/2111.09881
https://arxiv.org/abs/2401.03868
https://arxiv.org/abs/2401.03868
https://api.semanticscholar.org/CorpusID:262013673
https://arxiv.org/abs/2306.14048


Resource-Efficient Algorithms and Systems of Foundation Models: A Survey 110:39

[308] Lulu Zhao, Fujia Zheng, Weihao Zeng, Keqing He, Weiran Xu, Huixing Jiang, Wei Wu, and Yanan Wu. 2022. Domain-

oriented prefix-tuning: Towards efficient and generalizable fine-tuning for zero-shot dialogue summarization. arXiv

preprint arXiv:2204.04362 (2022).

[309] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid Shojanazeri,

Myle Ott, Sam Shleifer, et al. 2023. PyTorch FSDP: Experiences on scaling fully sharded data parallel. arXiv preprint

arXiv:2304.11277 (2023).

[310] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,

Tianqi Chen, and Baris Kasikci. 2023. Atom: Low-bit quantization for efficient and accurate LLM serving.

arXiv:2310.19102 [cs.LG] (2023).

[311] Yang Zhao, Yanwu Xu, Zhisheng Xiao, Haolin Ja, and Tingbo Hou. 2024. MobileDiffusion: Instant text-to-image

generation on mobile devices. arXiv:2311.16567 [cs.CV] (2024). https://arxiv.org/abs/2311.16567

[312] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang, Yuanzhong

Xu, Danyang Zho, Eric P. Xing, et al. 2022. Alpa: Automating inter- and intra-operator parallelism for distributed

deep learning. In Proceedings of the 16th USENIX Symposium on Operating Systems Design and Implementation. 559–

578.

[313] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao, Christos Zozyrakis,

Ion Stoica, Joseph E. Gonzalez, et al. 2023. Efficiently programming large language models using SGLang. arXiv

preprint arXiv:2312.07104 (2023).

[314] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang. 2024. DistServe:

Disaggregating prefill and decoding for goodput-optimized large langage model serving. In Proceedings of the 18th

USENIX Symposium on Operating Systems Design and Implementation (OSDI’24). 193–210.

[315] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. 2020. BERT loses patience: Fast and

robust inference with early exit. Advances in Neural Information Processing Systems 33 (2020), 18330–18341.

[316] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. 2023. A survey on model compression for large language

models. arXiv preprint arXiv:2308.07633 (2023).

[317] Yonghao Zhuang, Hexu Zhao, Lianmin Zheng, Zhuohan Li, Eric P. Xing, Qirong Ho, Joseph E. Gonzalez, Ion Stoica,

and Hao Zhang. 2023. On optimizing the communication of model parallelism. In Proceedings of the Machine Learning

and Systems Conference.

[318] Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. 2023. Delta-LoRA: Fine-tuning

high-rank parameters with the delta of low-rank matrices. arXiv:2309.02411 [cs] (2023). http://arxiv.org/abs/2309.

02411

Received 26 February 2024; revised 24 September 2024; accepted 18 November 2024

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.

https://arxiv.org/abs/2310.19102
https://arxiv.org/abs/2311.16567
https://arxiv.org/abs/2311.16567
http://arxiv.org/abs/2309.02411

