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model based multimodal models, are revolutionizing the entire machine learning lifecycle, from training to

deployment. However, the substantial advancements in versatility and performance these models offer come

at a significant cost in terms of hardware resources. To support the growth of these large models in a scalable

and environmentally sustainable way, there has been a considerable focus on developing resource-efficient

strategies. This survey delves into the critical importance of such research, examining both algorithmic and

systemic aspects. It offers a comprehensive analysis and valuable insights gleaned from existing literature,

encompassing a broad array of topics from cutting-edge model architectures and training/serving algorithms

to practical system designs and implementations. The goal of this survey is to provide an overarching under-

standing of how current approaches are tackling the resource challenges posed by large foundation models

and to potentially inspire future breakthroughs in this field.
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1 Introduction

In the rapidly evolving field of artificial intelligence (AI), a paradigm shift is under way. We
are witnessing the transition from specialized, fragmented deep learning models to versatile, one-
size-fits-all foundation models (FMs). These advanced AI systems are capable of operating in an
open-world context, interacting with open vocabularies and image pixels for unseen AI tasks (i.e.,
zero-shot abilities). They are exemplified by (1) large language models (LLMs) such as GPTs [25]
that can ingest almost every NLP task in the form as a prompt; (2) vision transformers models

(ViTs) such as Masked Autoencoder (MAE) [94] that can handle various downstream vision
tasks; (3) latent diffusion models (LDMs) such as Stable Diffusion [218] that generate high-
quality images with arbitrary text-based prompts; (4) multimodal models such as CLIP [212] and
ImageBind [77] that map different modal data into the same latent space and are widely used
as backbone for cross-modality tasks like image retrieval/search and visual-question answering.
Such flexibility and generality mark a significant departure from the earlier era of AI, setting a
new standard for how AI interfaces with the world.

The success of these FMs is deeply rooted in their scalability: unlike their predecessors, these
models’ accuracy and generalization ability can continuously expand with more data or parame-
ters, without altering the underlying algorithms and architectures [279]. An impressive evidence
is the scaling law [117]: it describes how the performance of transformer-based models can pre-
dictably improve with more model size and data volume; until today, the scaling law stands still.
This scalability is not just a matter of model size; it extends to their ability to tackle increas-
ingly complex tasks, making them a cornerstone in the journey toward AGI (artificial general
intelligence).

However, the scalability comes at a cost of huge resource demand. FMs, by their very nature, are
resource-hungry for training and deployment. These resources encompass not only the computing
processors like GPUs and TPUs but also the memory, energy, and network bandwidth. For example,
the pre-training of LLaMa-2-70B takes 1.7× millions of GPU hours and consumes 2.5× 1012 joules
of energy. The estimated total emissions were 291 tons of CO2 equivalent. Beyond training, the data
processing, experimentation, and inference stages consume comparable or even more electricity
according to Meta AI [265]. A recent analysis [48] reveals that, to satisfy the continuation of the
current trends in AI capacity and adoption, NVIDIA needs to ship 1.5 million AI server units per
year by 2027. These servers, running at full capacity, would consume at least 85.4 terawatt-hours
of electricity annually—more than what many countries like New Zealand and Austria use in a
whole year. As FMs increase in size and complexity, their resource requirements escalate, posing
a significant challenge in their development and deployment.

The huge resource footprint of a large FM also hinders its democratization. Up to the end of
2023, there were only a few major players capable of training and deploying the state-of-the-art
FMs, who thereby have powerful control over the public and can potentially manipulate them
in a way they prefer. The models are served on clouds instead of devices as many lightweight
DNNs do [275, 302]; it makes data privacy preservation almost impossible. However, recently,
smartphone vendors have been boasting about running large FMs locally and some pioneering
engines were developed for on-device LLMs [6, 7, 76, 169], but the models demonstrated are limited
to relatively small scale (e.g., <10 billion) and have not yet seen real-world deployment.

Therefore, a significant amount of research has been dedicated to enhance the efficiency of these
FMs. These efforts span a wide range of approaches, from optimizing algorithms to system-level
innovations, focusing on reducing the resource footprint of these models without compromising
their performance. This survey aims to delve into these research efforts, exploring the diverse
strategies employed to make FMs more resource-efficient. We will examine advancements in algo-
rithmic efficiency, system optimizations, and the development of novel architectures that are less
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resource-intensive. The survey also spans from clouds to edge and devices, where the large FMs
gain dramatic attention as well. Through this exploration, we aim to provide a comprehensive un-
derstanding of the current state and future directions of resource-efficient algorithms and systems
in the realm of FMs.

Scope and Rationales. First, we survey only algorithm and system innovations; we exclude a
huge body of work at hardware design. Second, the definition of resource in this survey is limited
to mainly physical ones, including computing, memory, storage, bandwidth, and so forth; we ex-
clude training data (labels) and privacy that can also be regarded as resources. Third, we mainly
survey papers published by top-tier CS conferences (i.e., those included in CSRankings). We also
manually pick related and potentially high-impact papers from arXiv. Fourth, we mainly survey
papers published after the year 2020, since the innovation of AI is going fast, with old knowledge
and methods being overturned frequently.

Organization. Section 2 overviews the classical FMs and their runtime cost. Section 3
investigates the architectural innovations that revise or replace the existing FM architectures.
Section 4 and Section 5 examine the algorithm-level and system-level literature toward more
resource-efficient FMs. Section 6 concludes the survey and presents potential future directions.

Comparison to Relevant Surveys. Concurrent to this work, there are a few (not yet peer-
reviewed) surveys about efficient LLMs, spanning from compression [316], algorithms [54], system-
algorithm [182, 246], and hardware [123]. As comparison, this work is the first comprehensive
survey toward resource-efficient FMs, including not only LLMs but also multimodal ones that
are equally important, such as diffusion models and ViTs. An extended version of this survey is
available elsewhere [277].

2 FM Overview

Figure 1 illustrates the evolutionary trace of popular FMs up to January 2024. In general, there are
three types of FMs: language-based, vision-based, and multimodal FMs.

Language FMs. Language FMs typically employ attention-based transformer architecture [244].
The process initiates by converting input words into high-dimensional vectors through an embed-
ding layer. During processing, attention mechanisms assign varying weights to different segments
of these input vectors. Following attention, layer normalization is applied to the output, ensuring
stabilization and standardization of the activations. Subsequently, each position-wise vector un-
dergoes transformation through a feedforward network (FFN), introducing non-linearity and
enabling the model to capture complex data patterns. Through multiple layers that incorporate
these components, the transformer learns hierarchical representations of the input data. In the
final stage, the output from the last transformer layer is directed into a linear layer, culminating
in the final prediction.

Vision FMs. In this article, we use the term vision FMs to refer to the FMs that only involve
the pure vision modality in their main pipeline. Vision FMs (e.g., SAM, seggpt [125, 254]) typically
employ ViT architecture [56], a transformer-based visual information processing block. As such,
efficient vision FMs (as well as those multimodal ones that rely on ViT) often benefit from the
efficient ViT designs. Given an input image, ViT first splits an image into fixed-size patches (i.e.,
tokens) by a convolutional embedding layer. For instance, a standard size RGB image input (i.e.,
3×224×224) will be split to 14×14 patches with 16×16 pixels. This embedding overhead is almost
negligible compared to the following compute-intensive transformer encoder (e.g., <5%). Besides,
an extra learnable classification token (CLS) is added to the token sequence to perform classifica-
tion. After that, positional embeddings are added into each token, and tokens are fed to a standard
transformer encoder. Depending on the specific downstream tasks, the hidden states generated by
the transformer encoder are finally fed into different heads, such as classification and detection.
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Fig. 1. The evolutionary trace of FMs.

Multimodal FMs. Multimodal FMs are used in two specific goals: encoding input data in differ-
ent modalities into the same latent space, or generating output data in different modalities. The two
lines of research have convergence—for example, multimodal-to-multimodal (or even any-to-any)
generation. To ingest and align multimodal input data, existing model architectures like CLIP [212]
typically consist of multiple transformer encoders, with each modality having its own set of trans-
former encoders. Notably, these encoders are generally trained from scratch, utilizing paired data
with the aligned modalities and current modality. To generate multimodal data, FMs can either
(1) reuse the LLM to generate text or (2) diffusion models [218] to generate high-quality image
pixels. The diffusion module primarily consists of two components: an image encoder/decoder
and a denoising network. There are also variants of diffusion model that replace the convolu-
tion with the transformer (e.g., DiTs) [204], as well as FMs [292] that involve richer modalities
like IMU or audio. Yet such modalities are mainly embedded with only a dedicated embedding
layer and reuse the same transformer architecture. Thereby, we do not discuss these models in
isolation.

Applications of FMs. In real-world applications, language FMs like GPT-4 [196] have trans-
formed tasks such as content generation [101], code assistance [142], and natural language un-
derstanding across multiple industries. These advancements enable chatbots and personal agents
to better understand user queries and provide more meaningful responses. In the case of vision
FMs, models such as SAM [125] are widely applied in medical imaging, allowing healthcare profes-
sionals to accurately segment and analyze images with minimal manual intervention, significantly
improving diagnostic accuracy. Multimodal FMs, including CLIP [212] and Stable Diffusion [218],
are transforming the creative industries by enabling artists to generate artwork from simple text
prompts, thereby expanding creative possibilities while reducing manual effort.
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Fig. 2. Empirical computation and storage comparison across different FMs.

Cost Analysis of Transformer. Since most FMs are based on transformer architecture, we
briefly analyze the resource cost of it. The attention mechanism in large FMs faces significant
computational bottlenecks primarily due to its quadratic complexity. This complexity stems from
calculating attention scores for every pair of positions within the input sequence, posing chal-
lenges in managing long sequences and impacting both training and inference efficiency. Addi-
tionally, beyond the attention mechanism, the computation complexity of the FFN scales linearly
with input length but quadratically with the model’s dimension. An increase in the length of the
input sequence causes a substantial rise in computational demand, attributable to the quadratic
nature of the attention mechanism. In quantitative terms, the computation complexity of atten-
tion is O(T 2D), whereas that of the FFN is O(TD2), where T represents the sequence length and
D the hidden state dimension of the model [159]. The decoder’s attention mechanism, similar to
that in the encoder, also experiences quadratic scaling with token length. This aspect becomes
particularly significant in autoregressive decoding tasks, where each token’s generation depends
on the preceding ones, intensifying computational requirements. The implementation of a key-

value (KV) cache in the decoder can substantially mitigate computational costs by reusing key
and value vectors across various positions [132].

We empirically analyze the resource costs of different FMs by comparing their demands in terms
of FLOPs and storage, as shown in Figure 2. For language models such as BERT, GPT-2, and T5,
the embedding layer and LM head contribute significantly to storage. However, these components
require minimal computational FLOPs. The FFN layer is the most computationally intensive com-
ponent. Similar trends are observed in vision and speech models, such as Wav2Vec2 and ViTs,
where convolution is not dominant. Instead, MLP and self-attention layers consume the most re-
sources. In multimodal models like ImageBind, the IMG-Encoder is the most resource-demanding,
whereas other encoders require significantly fewer resources.

3 Resource-Efficient Architectures

3.1 Efficient Attention

As summarized in Figure 3, numerous efforts have been invested to mitigate the huge resource cost
of attention-based transformer architecture. The time and space complexity comparison is shown
in Table 1.

3.1.1 Sparse Attention. Motivated by graph sparsification, sparse attention aims to build a
sparse attention matrix. This approach aims to retain the empirical advantages of a fully qua-
dratic self-attention scheme while employing a reduced number of inner products. For instance,
Longformer [66], ETC [159], and BIGBIRD [294] decompose conventional attention into local win-
dowed attention and task-specific global attention, effectively reducing self-attention complexity
to linear. HEPOS [102] introduces head-wise positional strides, allowing each attention head to
concentrate on a specific subset of the input sequence. MATE [58] transforms attention into a
multi-view format, efficiently addressing either rows or columns in a table. TDANet [143] emulates
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Fig. 3. Illustrations of efficient attention architectures.

Table 1. Time and Space Complexity Comparison, Where T Represents Sequence Length and d
Represents Hidden Dimension

Model Time Space Model Time Space

Transformer [244] O(T 2d) O(T 2 +Td) AFT [298] O(T 2d) O(Td)
Reformer [126] O(T logTd) O(T logT +Td) Hyena [208] O(T logTd) O(Td)
SSM [82] O(T logTd) O(Td) Linear Transformers [118] O(Td2) O(Td + d2)

RetNet [229] O(Td) O(Td) RWKV [205] O(Td) O(d)

the human brain’s top-down attention mechanism to selectively focus on the most relevant infor-
mation, thereby enhancing speech separation efficiency.

3.1.2 Approximate Attention. Approximate attention mainly includes low-rank approximations
of the self-attention matrix and innovative reformulations of the self-attention. Linformer [250]
effectively decomposes the attention matrix into a low-rank matrix. It involves projecting the
length dimensions of keys and values into a lower-dimensional space, resulting in a significant
reduction in memory complexity. Reformer [126] utilizes locality-sensitive hashing to replace the
conventional dot-product attention. Katharopoulos et al. [118] introduced a kernel-based alterna-
tive to self-attention, leveraging the associative property of matrix multiplication for computing
self-attention weights. PolySketchFormer [116] employs polynomial functions and sketching tech-
niques to approximate softmax attention outputs. Mega [178], featuring a single-head gated atten-
tion mechanism, incorporates exponential moving average. Deformable Attention [268] proposes
a data-aware, deformable attention mechanism, contributing to improved performance within the
ViT architecture. CrossViT [35] introduces linear cross-attention, empowering the ViT architec-
ture to efficiently handle variably sized input tokens while mitigating computational costs.

3.1.3 Attention-Free Approaches. Despite the dominance of attention-based transformer archi-
tectures in large FMs, several works have put forth innovative architectures that hold the potential
to replace the traditional transformer model. For instance, Hyena [208] introduces an architecture
that interleaves implicitly parameterized long convolutions with data-controlled gating. This de-
sign provides a subquadratic alternative to attention in large-scale language models, thereby en-
hancing efficiency in processing long sequences. Another notable trend is the substitution of the
attention mechanism with state space models (SSMs), as explored in other works [44, 82, 197].
Mamba [81] seamlessly integrates selective SSMs into a streamlined neural network architecture,
eliminating attention and MLP blocks. This model achieves a notable 5× speed increase over tra-
ditional transformers and exhibits linear scaling with sequence length. Recurrent-style transform-
ers [26, 27] adopt a recurrent neural network (RNN)-based architecture, replacing attention
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Fig. 4. Traditional and typical dynamic transformers.

with an RNN to achieve linear complexity. RWKV [205] combines the efficient parallelizable train-
ing of transformers with the effective inference capabilities of RNNs. RetNet [229] introduces an
architecture that replaces multi-head attention with a multi-scale retention mechanism. During
training, RetNet demonstrates 25% to 50% memory savings and a 7× acceleration compared to the
standard transformer.

3.2 Dynamic Neural Network

3.2.1 Mixture of Experts. Mixture-of-Experts (MoE), as illustrated in Figure 4(b), represents
an efficient and sparse approach for training and deploying large FMs with extensive parame-
ter sets. This model utilizes routed sparse parameters during inference. Switch Transformer [63]
introduces a switch routing algorithm, leading to models with improved efficiency and reduced
computational and communication costs. Switch Transformer demonstrates the scalability and ef-
fectiveness of the MoE framework by managing up to 1 trillion parameters, with as many as 2,048
experts. GLaM [57], a family of decoder-only language models, leverages a sparsely activated MoE
design. V-MoE [217] presents a sparse adaptation of the ViT, scaling to 15 billion parameters, and
achieves performance matching dense models while requiring less training time. LIMoE [188] rep-
resents the first multimodal model to incorporate sparse MoE, significantly outperforming CLIP
in various tasks. Mistral AI introduces Mistral,1 an MoE model comprising 8 experts, each with
7 billion parameters. This model outperforms the performance of the LLaMA2-70B model [238].
MoEfication [305] converts a model into its MoE variant with equivalent parameters. Sparse up-
cycling [127] initializes sparsely activated MoE from dense checkpoints, reducing about 50% of
the original dense pre-training costs. FFF [23] divides the feed-forward layer into separate leaves
instead of copying the entire feed-forward layer as an expert, being up to 220× faster than the origi-
nal feed-forward layer with about 5% accuracy loss. Section 5.1 will detail systematic optimizations
applied to MoE models.

3.2.2 Early Exiting. As illustrated in Figure 4(c), early-exiting optimization is a strategy that al-
lows a model to terminate its computational process prematurely when it attains high confidence
in the prediction or encounters resource constraints. He and Hofmann [93] investigate modifi-
cations to the standard transformer block, aiming for simpler yet efficient architectures without
sacrificing performance. M4 [292] introduces a multi-path task execution framework, enabling
elastic fine-tuning and execution of foundational model blocks for different training and inference

1https://mistral.ai/
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tasks. FREE [20] proposes a shallow-deep module that synchronizes the decoding of the current
token with previously processed early exit tokens. SkipDecode [49] is designed for batch inferenc-
ing and KV caching, overcoming previous limitations by establishing a unique exit point for each
token in a batch at every sequence position. PABEE [315] enhances the efficiency of pre-trained
language models by integrating internal classifiers at each layer. The inference process halts when
predictions stabilize for a set number of steps, facilitating quicker predictions with reduced layer
usage. DeeBERT [271] augments BERT’s inference efficiency by incorporating early exit points.
DeeBERT allows instances to terminate at intermediate layers based on confidence levels, effec-
tively reducing computational demands and accelerating inference. Bakhtiarnia et al. [22] propose
seven distinct architectural designs for early exit branches suitable for dynamic inference in ViT
backbones. LGViT [274] presents an early-exiting framework tailored for general ViTs, featuring
diverse exiting heads, such as local perception and global aggregation heads, to balance efficiency
and accuracy. This approach achieves competitive performance with an approximate 1.8× speedup.

3.3 Diffusion-Specific Optimization

Generating images through diffusion models typically involves an iterative process with numerous
denoising steps. Recent research has focused on accelerating the denoising process and reducing
the resource requirements during image generation, which fall into three main categories: (1) effi-
cient sampling, (2) diffusion in latent space, and (3) diffusion architecture variants.

3.3.1 Efficient Sampling. To enhance the denoising process of a diffusion model while main-
taining or improving sample quality, many efforts have been made to improve the sampling pro-
cess. These works emphasize resource and time efficiency in their architectures. Nichol and Dhari-
wal [192] made strides in enhancing the traditional DDPM by focusing on resource efficiency. Their
improved model not only competes in log-likelihoods but also enhances sample quality. This ef-
ficiency is achieved by learning the variances of the reverse diffusion process and employing a
hybrid training objective. This methodology requires fewer forward passes and shows improved
scalability in terms of model capacity and computational power. DDIM [225] represents a sig-
nificant improvement in time efficiency for diffusion models. By introducing a non-Markovian,
deterministic approach to sampling, DDIM accelerates the generation process, allowing for faster
sampling without compromising sample quality. PNDM [164] enhances the efficiency of DDPM
in generating high-quality samples. The approach treats the diffusion process as solving differen-
tial equations on manifolds, greatly accelerating the inference process. DPM-Solver [175] utilizes
a high-order solver that exploits the semi-linear structure of diffusion ODEs, facilitating fast and
high-quality sample generation. Remarkably, DPM-Solver achieves this with as few as 10 to 20
denoising steps, highlighting the latency efficiency in sample generation.

3.3.2 Diffusion in Latent Space. In traditional diffusion models, operations are usually per-
formed within the pixel space of images. However, this approach proves to be inefficient for
high-resolution images because of the considerable computational demands and significant
memory requirements. In response to these challenges, researchers proposed a shift toward
conducting diffusion processes in latent space through VAEs. This paradigm results in substantial
memory-efficient advancements, allowing for the generation of high-resolution images with
reduced computational resources. LDM [218], also known as Stable Diffusion, serves as a notable
example of memory-efficient image generation. By performing diffusion processes within a latent
space derived from pixel data through a VAE, LDM effectively tackles scalability issues present
in earlier diffusion models. LD-ZNet [207] leverages the memory-efficient properties of LDM
for image segmentation tasks. This approach capitalizes on the deep semantic understanding
inherent in LDM’s internal features, providing a nuanced bridge between real and AI-generated
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Fig. 5. A summary of resource-efficient VIT variants.

imagery. SALAD [130] introduces a memory-efficient methodology for 3D shape generation and
manipulation with a cascaded diffusion model.

3.3.3 Diffusion Architecture Variants. Another method for enhancing diffusion models involves
the adoption of more efficient model architectures. This strategy focuses on refining the structural
framework of diffusion models to optimize their performance. SnapFusion [148] introduces an op-
timized text-to-image diffusion model for mobile devices, featuring a resource-efficient network
architecture. This model overcomes the computational and latency limitations of existing mod-
els through a redesigned network architecture and improved step distillation. It generates high-
quality 512×512 images in under 2 seconds with fewer denoising steps. ScaleCrafter [96] addresses
the generation of ultra-high-resolution images using pre-trained diffusion models with an innova-
tive and resource-efficient network design. ScaleCrafter incorporates techniques like “re-dilation,”
“dispersed convolution,” and “noise-damped classifier-free guidance” to dynamically adjust con-
volutional perception fields during inference. ERNIE-ViLG [65] introduces a novel text-to-image
diffusion model that integrates fine-grained textual and visual knowledge into a highly efficient
network architecture. With a mixture-of-denoising-experts mechanism and scaling up to 24 bil-
lion parameters, ERNIE-ViLG outperforms the existing models on MS-COCO with a remarkable
zero-shot FID-30k score of 6.75. Mobile diffusion [311] conducts a comprehensive examination
of model architecture design to minimize model size and FLOPs. The authors also optimize the
sampling steps, making one-step sampling compatible to downstream applications.

3.4 ViT-Specific Optimizations

As a transformer variant, ViT benefits from general optimizations aforementioned; yet, there also
exist ViT-specific architecture optimizations as summarized in Figure 5. LeViT [80] is a hybrid
neural network designed for efficient image classification. Its main backbone features a pyramid
architecture, progressively reducing the dimensionality of features while concurrently increasing
the number of attention heads. MobileViT [179] adheres to the idea of utilizing CNNs to construct
a more lightweight transformer architecture. Through the design of a convolution-like Mobile-
ViT block, the model achieves a lightweight and low-latency implementation, specifically tailored
for practical hardware platforms. EfficientFormer [153] designs a lightweight CNN-Transformer
hybrid architecture, achieving more efficient on-device inference. EfficientViT [28] introduces a
linear attention mechanism to alleviate the computational cost linked with the high overhead of
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softmax in non-linear attention. In the domain of super-resolution, EfficientViT achieves a speedup
of up to 6.4 × compared to Restormer [295]. FastViT [242] introduces a token mixing operator
that uses structural re-parameterization to lower the memory access cost by removing the skip-
connections in the network. EfficientViT [167] identifies that the speed of existing transformer
models is commonly bounded by memory-inefficient operations, especially the tensor reshaping
and element-wise functions in MHSA. In response, the authors reduce the MHSA by a sandwiched
structure. LightViT [103] presents several learning-based optimizations of pure convolution-free
ViT architecture. EdgeViT [199] enables attention-based vision models to compete with the best
lightweight CNNs in the tradeoff between accuracy and on-device efficiency.

4 Resource-Efficient Algorithms

This section focuses on resource-efficient large FMs techniques at the algorithm level. Compared
to traditional DNNs, large FMs exhibit new characteristics such as their huge parameter set and
autoregressive inference. This disparity has led to the emergence of numerous resource-efficient
algorithms, which are categorized based on the lifecycle of FMs: pre-training, fine-tuning, serving
algorithms, and model compression.

4.1 Pre-Training Algorithms

Pre-training for large FMs relies on a substantial amount of computation resources. For instance,
GPT-3-175B consumes 3.14×1023 FLOPs and LLaMA-70B takes 1.7×106 GPU hours. Consequently,
optimizing the utilization of computational resources is crucial for the efficient pre-training of FMs.
Resource-efficient algorithms can be categorized into training data deduction, neural architecture
search, progressive learning, and mixed precision training.

4.1.1 Training Data Quality Control. A portion of work focus on controlling the quality of train-
ing data. DataComp [73] proposes a novel paradigm of locking the model/hyperparameters and
refining the pre-training data. DFN [62] uses a proxy network as a modeling of the pre-training
dataset. It recognizes that a better performance of the proxy network does not necessarily trans-
late to the higher performance of the to-be-trained network. DataCompDR [243] of MobileCLIP
leverages knowledge transfer from an image captioning model and an ensemble of strong CLIP
encoders to improve the accuracy of efficient models.

4.1.2 Training Data Reduction. Pre-training for large FMs needs a dataset at the trillion scale,
exemplified by 0.3 trillion tokens for GPT-3-175B [25] and 2 trillion tokens for LLaMa-2-70B [238].
More data indicates more resource expenditure. Thereby, prior literature resorts to reduce vast
training data through two aspects: deduplicating text datasets and image patch removal.

Deduplicating text datasets [137] shows that training data has redundancy caused by near-
duplicate examples and long repetitive substrings. The reduction of repetitions can lead to fewer
training steps without compromising performance.

Image patch removal is achieved by either reducing the number of patch inputs to the model
or reorganizing image tokens based on modified model architectures. For instance, TRIPS [112]
employs a patch selection layer to reduce image patches. This layer computes attentive image to-
kens through text guidance, resulting in a 40% reduction in computation resources, compared
to previous pre-training vision-language models. MAEs [94] mask image patches in the pre-
training phrase, but the large masking ratio brings significant computation resource wastage.
MixMAE [162] introduces a method for mixing multiple images at the patch level, thereby avoid-
ing the need for introducing “[MASK]” symbols. COPA [113] introduces an auxiliary pre-training
task called patch-text alignment. This patch-level alignment strategy aims to decrease redundancy
in image patches. PatchDropout [170] introduces the concept of patch dropout to enhance both
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computation and memory efficiency. This method involves the random sampling of a subset of
original image patches to effectively shorten the length of token sequences.

4.1.3 Progressive Learning. Progressive learning is a training strategy that begins by training
a small model and then gradually increases the model size, throughout the training process. This
approach optimizes computational resource usage by reusing the computations from the previ-
ous stage. Inspired by the insight that knowledge can be shared across models of different depths,
StackingBERT [78] introduces a progressive stacking algorithm. This algorithm cost-effectively
trains a large model with no performance degradation by sequentially stacking attention layers
from smaller models. CompoundGrow [83] identifies the similarity between progressive training
algorithms and NAS. Staged training [221] adopts a strategy where a small model is pre-trained
initially, and subsequently the depth and width of the model are increased, continuing the training
process. Knowledge inheritance [211] suggests employing existing pre-trained language models
as teacher models to provide guidance during the training of larger models. The supplementary
auxiliary supervision offered by the teacher model can effectively enhance the training speed of
the larger model. The progressive training algorithm in AutoProg [141] is for the ViT. AutoProg
automatically adjusts the growth schedule to achieve lossless performance and make training re-
source consumption minimal. LiGO [249] introduces small model parameters to initialize the large
model through a trainable parameter linear map. LiGO achieves this by factorizing the growing
transformation into a composition of linear operators at width and depth dimensions.

4.1.4 Mixed Precision Training. Mixed precision training often utilizes half-precision floating-
point data representation instead of single precision. This approach significantly reduces memory
requirements, approximately halving the storage space needed for weights, activations, and gra-
dients. Mesa [201] proposes the combination of activation compressed training [31] with mixed
precision training to further reduce the memory used by activations. The method quantifies acti-
vation based on the distribution of multi-head self-attention layers to minimize the approximation
error. GACT [168] introduces a dynamically adjusted compression ratio based on the importance
of each gradient.

4.2 Fine-Tuning Algorithms

Efficient fine-tuning algorithms are designed to reduce the workload to adapt a pre-trained FM
to downstream tasks. As summarized in Figure 6, these techniques can be categorized into three
groups: additive tuning, selective tuning, and re-parameter tuning.

4.2.1 Additive Tuning. Large FMs can achieve high performance with low costs by incorporat-
ing additional parameters and fine-tuning them for new tasks. In particular, this additive tuning
process in large FMs can be categorized into three main classes: adapter tuning, prompt tuning,
and prefix tuning.

Adapter tuning aims to reduce training costs by introducing adapter modules to specific lay-
ers (or all layers) of pre-trained large FMs. During tuning, the backbone of the pre-trained
model remains frozen, and adapter modules are utilized to acquire task-specific knowledge. Some
works [60, 200, 234] focus on designing adapters for multi-task or multimodal extensions. ADA [60]
and MetaTroll [234] concentrate on incrementally extending pre-trained transformers’ capabili-
ties across multiple tasks. This approach helps alleviate catastrophic forgetting during learning
while simultaneously reducing computational expenses. ST-Adapter [200] introduces built-in spa-
tiotemporal reasoning abilities, allowing pre-trained models to significantly reduce the number of
parameters that need to be updated in cross-modal tasks. HiWi [156] improves inference speed
by applying adapters to pre-trained parameters rather than hidden representations. AdaMix [255]
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Fig. 6. A summary of various fine-tuning algorithms.

designs a combined mechanism that merges the weights of different adapters into a single adapter
at each transformer layer. This innovation significantly reduces the additional storage cost intro-
duced by multiple adapters. MEFT [157] designs a method for inserting adapters into the LLM by
modifying the LLM to its reversible variant, reducing activation memory and thus improving the
memory efficiency of fine-tuning. Residual Adapters [236] utilizes personalized residual adapters
to address the issue of performance degradation in automatic speech recognition caused by non-
standard speech. AutoProg [141] achieves lossless acceleration by automatically increasing the
training overload on-the-fly. Such a procedure is done by progressively growth of subnets.

Prompt tuning involves designing a task-specific prompt for each task, with the aim of replacing
the traditional fine-tuning of pre-trained large FMs parameters. By tuning the input prompts in-
stead, this method significantly reduces the resources and time required for the fine-tuning. Some
works [17, 138, 239] focus on improving the efficient scalability of prompts in multi-task settings.
For example, PromptTuning [138], ATTEMPT [17], and BioInstruct [239] investigate how the uti-
lization of mixed soft prompts can efficiently transfer knowledge across different tasks. These
approaches help mitigate parameter update costs by reusing the frozen pre-trained large model.
Furthermore, some works [36, 284] focus on minimizing prompt fine-tuning costs for specific tasks.
For instance, DualPL [284] designs two prompts and separately captures the relevant knowledge
of both tasks. This approach addresses the high cost associated with collecting state labels for
slots and values in dialogue state tracking systems. In machine reading comprehension tasks,
MPrompt [36] introduces task-specific multi-level prompt tuning to enhance the understanding
of input semantics at different granularities while reducing the number of parameter updates.

Prefix tuning introduces a trainable, task-specific prefix part to each layer of large FMs. This
technique aims to reduce the tuning cost by limiting the updates to the parameters in this pre-
fix. Some works [160, 189, 245, 252, 308] focus on enhancing the performance of prefix tuning in
specific domains. For example, UAPT [252] and Prefix-diffusion [160] address the issue of limited
diversity in generating captions for images. These approaches extract image features from large
FMs and design prefixes to enhance performance while reducing additional overhead. DOP [308]
and DAPA [189] concentrate on domain-generalization problems in abstract summarization. These
approaches design prefixes for each source domain to improve the model’s generalization capabil-
ities. PIP [245] focuses on syntactic control in paraphrase generation and reduces training costs
by designing parsing-indicating prefixes.
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Fig. 7. LoRA and its optimization methods.

4.2.2 Selective Tuning. Selective tuning aims to maintain high performance on new tasks with
low training costs by freezing the majority of parameters in large FMs and selectively updating
only a small portion of the parameters. Some works focus on optimizing the performance of se-
lective tuning. For example, SAM [72] explores how the choice of tunable parameters affects tun-
ing. By proposing a second-order approximation method, it tunes fewer parameters to achieve
better model performance. SmartFRZ [146] focuses on improving the efficiency of layer freezing
by introducing an adaptive layer freezing technique based on different network structures. This
innovation enhances system accuracy and training speed. FiSH-DiP [46] explores the effective-
ness of tuning with limited data by introducing a sample-aware dynamic sparse tuning strategy.
This approach selectively tunes partial parameters using sample feedback to enhance the model’s
generalization in resource-constrained situations. Token Mixing [171] and VL-PET [100] enhance
fine-tuning efficiency of visual-language tasks by adjusting and selecting a subset of trainable
parameters.

4.2.3 Re-parameter Tuning. Re-parameter tuning adapts large FMs by targeting a significantly
smaller subspace than the original, expansive training space. This approach involves fine-tuning
low-rank matrix parameters, a technique that effectively reduces the overall training cost. The
majority of existing research centers on re-parameterization tuning through the implementa-
tion of the low-rank adapter design. For example, EfficientDM [95], QLoRA [51], PEQA [121],
QALoRA [278], and LoftQ [151] incorporate quantization techniques, building upon the founda-
tion of LoRA. GLoRA [32] enhances LoRA’s generality, improving model transferability, few-shot
capabilities, and domain generalization. PELA [87] derives inspiration from LoRA and devises
a low-rank approximation compression method. LongLoRA [38] extends the capabilities of
LoRA by incorporating context expansion through shift short attention. For ViT’s linear layers,
LBP-WHT [283] diminishes the computational costs of matrix multiplication by employing low-
rank backward propagation based on the Walsh-Hadamard transform. Additionally, DSEE [37]
investigates the application of sparse-aware low-rank updates on pre-trained model weights.
Dynamic-Pooling [191] mechanisms are designed to predict inference boundaries through
autoregressive prediction.

LoRA, as the most popular parameter-efficient fine-tuning method, still exhibits performance
gaps when compared to full fine-tuning. To address this, various methods have been developed
to enhance LoRA’s performance, as shown in Figure 7. Delta-LoRA [318] aims to bridge the per-
formance gap by updating the pre-trained weights through the product of low-rank matrices A
and B, thus adding trainable parameters without incurring additional memory overhead. How-
ever, PiSSA [180] identifies an issue where LoRA initializes low-rank matrices with Gaussian ran-
dom values and zeros, resulting in very small initial gradient values and slow convergence. Last,
DoRA [166] and LoRA+ [92] focus on enhancing the learning process itself to further improve
efficiency and effectiveness. DoRA decomposes the pre-trained weights into their magnitude and
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directional components, and fine-tunes the directional matrix. LoRA+ sets the unbalanced learning
rate for different blocks, accelerating convergence and improving fine-tuning performance.

4.3 Inference Algorithms

4.3.1 Opportunistic Decoding. The autoregressive mechanism significantly hinders the infer-
ence efficiency of large FMs. To address this, various approaches aim to replace autoregressive de-
coding with more efficient non-autoregressive techniques. Speculative decoding has been widely
acknowledged as an effective method to accelerate autoregressive decoding. It involves generating
sequences autoregressively with a cost-efficient small model, followed by parallel token verifica-
tion using a larger model. Leviathan et al. [139] report a 2 to 3× improvement in performance
using speculative decoding on the T5X model, whereas a concurrent study [34] demonstrates sim-
ilar speedups on a 70B Chinchilla model. SpecTr [230] further enhances speculative decoding by
increasing the number of candidate tokens and improving the draft selection process, resulting
in a 2.13× improvement in wall clock speed and an additional 1.37× speedup on standard bench-
marks. ProphetNet [280] introduces a sequence modeling architecture that predicts future tokens,
partially reducing the reliance on autoregression. In the draft stage, Draft & Verify [300] skips
certain intermediate layers, achieving a 1.73× speedup when tested on Llama-2. Medusa [29] of-
fers another non-autoregressive decoding architecture that requires no auxiliary model, predict-
ing multiple tokens by pre-training heads for different timesteps and verifying them concurrently.
Look-ahead decoding [70] accelerates inference in large FMs without relying on a draft model or
data store, reducing decoding steps in proportion to log(FLOPs). Additionally, speculative decod-
ing is the foundation for various inference systems, such as SpecInfer [183], which uses multiple
draft models in the cloud, and LLMCad [272], deployed at the edge.

4.3.2 Input Filtering and Compression. This method includes directly filtering raw data (i.e.,
prompt filtering) or filtering hidden activations of FMs (i.e., token pruning).

Prompt Compression. Computations can be effectively reduced by compressing the prompt
to the model. LLMLingua [114] introduces a prompt compression approach from a coarse-to-fine
perspective. Wingate et al. [262] investigate the feasibility, applicability, and potential of com-
pressing natural language for large FMs while preserving semantics. EntropyRank [240] presents
an unsupervised approach for extracting keywords and keyphrases from textual data. This method
leverages a pre-trained language large FM and incorporates Shannon’s information maximiza-
tion. LLMZip [241] employs LLaMA-7B for compressing natural language. Experimental results
demonstrate that LLMZip outperforms cutting-edge text compression methods, including BSC,
ZPAQ, and paq8h. AutoCompressors [40] utilizes large FMs to compress natural language into
compact summary vectors. These vectors can then serve as soft prompts for large FM usage.
ICAE [75] utilizes the capabilities of large FMs to condense an extensive context into concise mem-
ory slots. These memory slots are directly adaptable by the large FMs for diverse purposes. Nugget
2D [210] introduces a prompt compression method specifically designed to handle long contexts.
CoT-Max [104] is a context pruner, aiming to enhance the Chain-of-Thought (CoT) ability of
large FMs.

Token Pruning. Research has also explored the pruning of input sequences for transform-
ers, often involving the incremental removal of less important tokens during inference. PoWER-
BERT [79] proposes the direct learning of token pruning configurations. Length-Adaptive Trans-
former [120] extends this idea by introducing LengthDrop, a technique that entails training
the model with various token pruning configurations, followed by an evolutionary search. TR-
BERT [287] formulates token pruning as a multi-step token selection problem and addresses it
through reinforcement learning. DynamicViT [214] hierarchically prunes redundant tokens based
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on their importance scores. AdaViT [181] and A-Vit [290] employ adaptive token reduction mech-
anisms and select different tokens for different images. AdaViT dynamically determines the usage
of patches, self-attention heads, and transformer blocks based on the input. A-ViT discards tokens
in ViTs during inference, adapting the token retention based on the complexity of the input im-
ages. SPViT [129] devises an adaptive instance-wise token selector and introduces a soft pruning
technique. PuMer [30] combines similar textual and visual tokens during inference for large-scale
vision-language models.

4.3.3 KV Cache. Optimizing memory for the KV cache is a crucial aspect of the autoregressive
decoder-based model inference process.

Memory-Efficient Sparse Attention. An alternative approach involves leveraging sparse at-
tention. However, it is noteworthy that most sparse attention designs, which primarily target the
reduction of computational complexity [24, 294], do not necessarily lead to a reduction in KV
cache memory consumption. This is because achieving a reduced memory footprint for the KV
cache necessitates a more stringent sparsity pattern. Specifically, tokens that are sparsified should
not be dynamically accessed in subsequent steps. To address this, H2O [306] introduces a KV cache
eviction strategy designed for optimal memory efficiency. This strategy employs attention scores
to identify and select the least important KV cache tokens in the current state for eviction. When
compared to robust baselines, H2O demonstrates the capability to reduce latency by up to 1.9×
and increase throughput by 29×. Dynamic Context Pruning [16] learns a memory-efficient KV
cache eviction strategy during the pre-training phase. This approach has demonstrated the ability
to achieve up to a 2× increase in inference throughput and even greater memory savings. Scis-
sorhands [172] utilizes an innovative compact KV cache and results in a notable reduction in KV
cache inference memory usage, achieving up to a 5× reduction while maintaining model quality.
By employing a landmark token to demarcate a token block, Landmark Attention [187] optimizes
KV cache storage. This approach enables the storage of most KV caches in a slower but larger ca-
pacity memory, resulting in reduced memory requirements without compromising performance.

4.3.4 Long Context. To effectively process long sequences, transformers need to adapt their
positional encoding to enhance their capability to capture long-range information. Due to the
quadratic computational cost associated with attention mechanisms, various resource-efficient op-
timizations have been proposed to handle long inputs. LM-Infinite [89] introduces a Λ-shaped at-
tention mechanism to handle long contexts efficiently. Characterized by computational efficiency
with O(n) time and space complexity, LM-Infinite consistently demonstrates fluency and quality
in text generation for sequences as long as 128k tokens on arXiv and OpenWebText2 datasets.
StreamingLLM [270] facilitates large FMs trained with a finite-length attention window to gen-
eralize to infinite stream decoding without the need for any fine-tuning. PCW [215] segments
a long context into chunks or “windows,” constrains the attention mechanism to operate solely
within each window, and reuses positional embeddings across the windows. LongNet [53] intro-
duces dilated attention, expanding the attentive field exponentially as the distance increases. This
innovation allows LongNet to scale transformers efficiently, enabling them to handle sequences of
up to 1 billion tokens. SLED [108], short for SLiding-Encoder and Decoder, repurposes and capital-
izes on well-validated short-text pre-trained language models. Despite competing effectively with
specialized models that are up to 50× larger, SLED does not require a dedicated and expensive
pre-training step.

4.4 Model Compression

As summarized in Figure 8, model compression refers to a set of techniques aimed at reducing the
model size without significant performance degradation, categorized into pruning, knowledge
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Fig. 8. Model compression techniques for LLMs.

Table 2. Model Compression Methods and Their Unique Challenges

Method Categories Unique Challenge

Pruning
Structured Pruning [177, 267, 301],

Unstructured Pruning [68, 224, 228], Contextual Pruning [174, 227]
Massive re-pre-training,

Unique transformer structures

Knowledge Distillation White-Box KD [39, 186], Black-Box KD [84, 235] Massive re-pre-training

Quantization Quantization-Aware Training [173, 232], Post-Training Quantization [50, 67]
Quantization outliers,

Per-tensor quantization

Low-Rank Decomposition [119, 152, 276] /

distillation (KD), quantization, and low-rank decomposition (LoRD). While compression has
been extensively studied in pre-LLM era [90, 91], compressing FMs faces unique challenges such
as weight outliers and extensive training efforts, as presented in Table 2.

4.4.1 Pruning. The pruning technique removes redundant or non-essential connections,
neurons, or layers from a neural network. The primary objective is to reduce the model size,
subsequently decreasing computational and storage costs, while maintaining model accuracy.
Structured pruning and unstructured pruning target weight reduction without modifying sparsity
during inference. In contrast, contextual pruning dynamically selects activated neurons or layers
during inference based on the sparsity of the model.

Structured pruning compresses large foundational models by eliminating entire structural com-
ponents, such as groups of consecutive parameters or hierarchical structures. Examples of these
structural components include channels or blocks of the model’s weights. It is often combined with
fine-tuning to mitigate accuracy loss. LLM-Pruner [177] is a task-agnostic structured pruning al-
gorithm that utilizes a small amount of data to assess the importance of coupled structure weights.
The method selectively removes non-essential model structures based on gradient information.
LLM-Pruner incorporates LoRA to recover the model’s accuracy after pruning. LoRAPrune [301]
is another structured pruning approach based on LoRA, leveraging LoRA’s weights and gradients
for importance estimation. This method iteratively eliminates excess channels and attention heads,
achieving superior results compared to LLM-Pruner. Lagunas et al. [133] improved structured prun-
ing techniques by incorporating blocks of variable sizes. This integration is applied within the
movement pruning framework during fine-tuning, resulting in the removal of entire model com-
ponents, such as attention heads. It achieves a 2.4× speedup and is 74% smaller compared to the
original BERT.
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Structured pruning is also employed in the training of large foundational models as well. Sheared
LLaMA [267] adopts an end-to-end approach to remove channels, encompassing layers, atten-
tion heads, intermediate layers, and hidden layers. Sheared LLaMA demonstrates the capability
to prune the LLaMA2-7B model down to 1.3 billion parameters. AdaPrune[106] accelerates neural
network training using transposable masks, resulting in a 2× speedup in matrix multiplications
during both inference and training. GUM [220] considers neuron specificity and introduces prun-
ing through network component-based global mobility and local uniqueness scores. This approach
aims to simultaneously maximize sensitivity and uniqueness, effectively reducing redundant pa-
rameters in large FM weights. PLATON [303] tackles the uncertainty in importance scores during
model pruning by employing the upper confidence bound of importance estimation. This approach
ensures stability in training and leads to improved generalization.

Unstructured pruning does not consider the inherent structure of the model. Typically, it removes
neurons with weights below a threshold, thereby compressing the model. When deploying un-
structured pruning, specialized techniques are required to implement model storage compression.
SparseGPT [68] treats the pruning framework as a generalized sparse regression problem and em-
ploys an approximate sparse regression solver, achieving 60% unstructured pruning on large GPT
models like 175B. Wanda [228] leverages the observation of emergent large-magnitude features
in large FMs. Wanda introduces sparsity by pruning weights with the smallest magnitudes multi-
plied by corresponding input activations, on a per-output basis. UPop [224] serves as a universal
vision-language transformer compression framework, which incorporates unifiedly multimodal
subnets and progressively searching/retraining. SIGE [224] is proposed to convert computation re-
duction into latency reduction on standard hardware, achieving notable accelerations for models
like DDPM, Stable Diffusion, and GauGAN with minimal edits.

Contextual pruning selects the sparse state of each layer, making it hardware-optimization
friendly. Deja Vu [174] dynamically predicts the sparsity of the next layer using the activations of
the previous layer. It determines which neurons of MLP blocks and the heads of attention blocks
need to be retained. To mitigate the overhead of this predictor, Deja Vu asynchronously predicts
the next layer. PowerInfer [227] utilizes the sparsity of activation to dynamically predict the hot-
activated neurons of the next layer and computes them on the GPU, whereas other cold-activated
neurons are computed on the CPU. In comparison to llama.cpp [76], PowerInfer achieves up to
11× acceleration, enabling the 40B model to output 10 tokens per second on a personal computer.

4.4.2 Knowledge Distillation. KD transfers knowledge from a complex, heavy model (i.e.,
teacher model) to a simpler corresponding model (i.e., student model) for model compression. In
general, there are two ways to apply KD to large FMs based on whether the internal structure of
the teacher model is considered: white-box KD and black-box KD.

Black-Box KD. Assuming that the internal structure of the teacher’s large base model is not vis-
ible, this approach fine-tunes the student model using prompt-response pairs generated by large
FMs’ API. The goal is to imbue the student model with the capabilities of the teacher model. For
large FMs, the insights gained due to the increased parameter count contribute to strong general-
ization abilities. Therefore, techniques such as In-Context Learning (ICL) [55] and CoT [257] can
be utilized to enable the student model to thoroughly learn the capabilities of the large FMs. ICL
distillation transfers few-shot learning and language model capabilities from the teacher model to
the student model by integrating ICL objectives with traditional language modeling objectives. In
Meta-ICL [186] and Metal-ICL [39], language models undergo meta-training on diverse tasks us-
ing ICL objectives. This process enables them to fine-tune for unseen tasks through ICL. Multitask-
ICT [105] introduces the concept of ICL distillation, fine-tuning models with ICL objectives and
examples from target tasks. CoT introduces intermediate reasoning steps in prompts, guiding
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language models to solve complex reasoning tasks step by step. Fu et al. [71] enhance the mathe-
matical reasoning capabilities of smaller models by instructing them through CoT distilled from
LLM teachers. Distilling step-by-step [99] extracts rationales from large FMs using CoT in a multi-
task framework, providing additional guidance for training smaller models in a multi-task environ-
ment. Fine-tune-CoT [97] uses zero-shot CoT prompting techniques, employing random sampling
to generate multiple reasoning solutions from large FMs to guide the training of student models.

White-Box KD. In contrast to black-box KD, white-box KD not only has access to the output
results of the teacher model but also to its structure and intermediate results. Therefore, white-
box KD can better leverage the structure of the teacher model, enabling smaller student models to
replicate and learn the capabilities of larger teacher models.

Timiryasov Tastet [235] train an ensemble consisting of a GPT-2 and small LLaMA models on
the developmentally plausible BabyLM dataset. Subsequently, they distilled it into a small LLaMA
model with 58 million parameters, surpassing in performance both of its teachers as well as a
similar model trained without distillation. MiniLLM [84] distills smaller language models from
generative larger language models. This approach replaces the forward KLD (Kullback-Leibler
Divergence) objective in the standard KD approaches with reverse KLD, which is more suit-
able for KD on generative language models, to prevent the student model from overestimating
the low-probability regions of the teacher distribution. Instead of solely relying on a fixed set
of output sequences, GKD [11] trains the student model using self-generated output sequences.
TED [155] employs task-aware filters to align the hidden representations of the student and the
teacher at each layer. These filters are designed to select task-relevant knowledge from the hidden
representations.

4.4.3 Quantization. Quantization is a well-established model compression method to mitigate
the storage and computational demands. Compared to traditional DNNs, LLMs exhibit a higher
frequency of activation outliers, which are crucial for maintaining model accuracy. Standard quan-
tization often removes these outliers, leading to a significant performance drop.

Quantization-aware training (QAT) involves training a quantized model in such a way that
it adapts its parameters to the lower precision introduced by quantization. The primary objective
of this process is to mitigate the accuracy loss that occurs as a result of quantization. LLM-QAT
tackles the issue of obtaining training data for LLMs by leveraging pre-trained models to gener-
ate samples through data-free distillation. Concurrently, it quantizes weights, activations, and KV
cache, thereby improving training throughput. QuantGPT [232] achieves this by incorporating
contrastive distillation from a full-precision teacher model and distilling logit information to a
quantized student model during autoregressive pre-training. BitNet [247] pioneers QAT for 1-bit
language models, training the language model with 1-bit weights and activations. Due to the sub-
stantial parameter count in large models often reaching tens or hundreds of billions, the training
cost of QAT remains considerable. On the one hand, QAT for large FMs is often combined with
KD to reduce the training cost, as seen in approaches such as LLM-QAT and QuantGPT. On the
other hand, quantization is frequently employed in the fine-tuning process of large models, such
as in PEQA [266] and QLoRA [51].

Post-training quantization (PTQ) converts a trained full-precision model to a low-precision
model without retraining. The advantage of PTQ lies in compressing models without altering
the model structure or necessitating retraining, thereby reducing the storage and computational
costs of models. Due to its low deployment cost, PTQ is also the most easily deployable and
widely applicable technique in model compression. However, unlike QAT and distillation, PTQ
lacks the feedback loop for adjusting precision through training. Research related to PTQ often
focuses on efficiently preserving relevant information in weights/activations while compressing
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models. PTQ can be categorized into two groups: weight-only quantization and weight-activation
co-quantization.

Weight-only Quantization. Weight-only quantization only quantizes the model weights. There
are two primary methods for mitigating quantization errors in the weight quantization of large
FMs.

The first category involves identifying outliers and important weights in weights that signifi-
cantly contribute to accuracy and treating these outliers specially. For instance, SpQR [52] iden-
tifies outlier weights and maintains them with high precision while quantizing the rest of the
weights. LLM.int8() [50] employs vectorized quantization and mixed-precision decomposition to
handle outlier values for efficient inference. LLM.int8() utilizes 8-bit quantization for matrix multi-
plication, effectively reducing GPU memory usage during inference. AWQ [158] reduces quantiza-
tion error by protecting the top 1% important weights in the model, utilizing per-channel scaling
to determine the optimal scaling factor. OWQ [135] analysis suggests that abnormal activations
amplify quantization errors, and it employs a mixed-precision scheme, applying higher-precision
quantization to weights with a significant impact from activated outlier values. SqueezeLLM [122]
observes that sensitive weights determine the final model’s quantization performance and pro-
poses a non-uniform quantization approach to minimize quantization errors in these sensitive
weights.

The second category of quantization reduction methods is based on the second-order infor-
mation updated weights. GPTQ [69] employs layer-wise quantization with OBQ [67], utilizing
inverse Hessian information to update weights. GPTQ reduces the bit-width of each weight to 3
or 4 bits, allowing quantization of GPT models with 175 billion parameters with minimal accuracy
loss. QuIP [33] uses an adaptive rounding process, minimizing a second-order proxy objective for
quantization.

Weights-Activation Co-quantization. Quantizing both weights and activation facilitates deploy-
ment on hardware accelerators. SmoothQuant [269] takes advantage of the similarity in the
channel-wise activations of different tokens and performs quantization on both weight and ac-
tivation using per-channel scaling transforms. RPTQ [293] recognizes the substantial range differ-
ences across different channels, reordering the channels for quantization and integrating them into
layer normalization and linear layer weights. OliVe [85] adopts outlier-victim pair quantization and
locally processes outliers. Outlier Suppression+ [258] builds upon Outlier Suppression [259], dis-
covering that harmful outliers exhibit an asymmetric distribution mainly concentrated in specific
channels. Considering the asymmetry of outliers and quantization errors from the weights of the
next layer, this approach performs channel-level translation and scaling operations. QLLM [161]
addresses the issue of activation outliers through an adaptive channel reassembly method and
mitigates the information loss caused by quantization using calibration data. LLM-FP4 [285]
quantizes weights into 4-bit float points, proposes per-channel activation quantization, and re-
parameters additional scaling factors as exponential biases of weights. ZeroQuant [286] combines
layer-wise KD and optimized quantization support to achieve 8-bit quantization. FlexRound [136]
updates the quantization scale of weights and activations by minimizing the error between
the quantized values and the full-precision values. ATOM [310] significantly boosts serving
throughput by using low-bit operators and considerably reduces memory consumption via low-bit
quantization.

There is also extensive quantization research for backbone networks in FMs like ViT and BERT.
For instance, BinaryBERT [195] and I-BERT [21] have achieved higher accuracy for BERT under
low-precision quantization. Wang et al. [253] exploit the operator fusion [194], PTQ techniques,
and structured pruning [133] to reduce the memory cost. They also reduce the number of compu-
tation operations of DeiT-Tiny [237]. Q-ViT [150], I-ViT [154], and OFQ [165] also achieve high
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Table 3. Popular Open Source Tools for Training and Deploying Large FMs

Name Descriptions Tags Name Descriptions Tags

DeepSpeed [1]

An open-sourced Python library proposed by Microsoft.

Supports MoE, long-sequence training, RLHF, ZeRO

optimizations,and model compression.

C/T/I Megatron [190]

The first cloud training system that introduces tensor

parallelism to distributed training models like GPT,

BERT, and T5. It is proposed by NVIDIA.

C/T

Alpa [312] An automatic FM parallelization engine from UCB. C/T/I FairScale [61] A new scaling library from Meta. C/T/I

Colossal

AI [144]

From HPC-AI Tech. Supports common parallelism

strategies and heterogeneous memory management.
C/T/I FlexFlow [183]

A cloud FM training and serving compiler from CMU

and Stanford University. Automatic parallelization.
C/T/I

PyTorch

FSDP [309]

A cloud large-scale training system atop PyTorch. It

shards parameters, optimizer states, and gradients.
C/T/I

HF

PEFT [2]

An efficient fine-tuning system from HuggingFace. It

supports a set of PEFT methods like LoRA and p-tuning.
C/T

MII [1] A library from DeepSpeed. Supports FastGen. C/I vLLM [132] A serving engine from UC Berkeley. PagedAttention. C/I

LightLLM [4] A framework for token-wise’s KV cache management. C/I Ray LLM [9] A multiple LLMs serving solution from Anyscale. C/I

TGI [3]

A high-performance serving engines from HuggingFace.

It supports tensor parallelism, quantization with

bitsandbytes and GPT-Q, and PagedAttention.

C/I TRT-LLM [8]

A TensorRT toolbox for optimized LLM inference. It

supports AWQ, GPTQ, SmoothQuant, speculative

decoding, pipeline/tensor parallelism, and PagedAttention.

C/I

llama.cpp [76]

A popular on-device LLM serving engine supporting

mixed F16/F32 precision and 2/3/4/5/6/8-bits int

quantization. Mainly for LLaMA-based LLMs.

C/E/I MNN-LLM [7]

An edge LLMs serving engine proposed by Alibaba

and inherited from MNN. It optimizes the inference

procedure separately in the prefill/decoding phase.

E/I

mllm [6] A versatile and efficient on-device multimodal engine. E/I MLC-LLM [5] Natively deploy LLMs with compiler-accelerated APIs. C/E/I

C, cloud; E, edge; T, training; I, inference.

accuracy for ViT under low-precision quantization. Q-Diffusion [147] compresses the noise esti-
mation network to expedite the generation process of diffusion models.

4.4.4 Low-Rank Decomposition (LoRD). LoRD approximates the weight matrix in large FMs by
decomposing a given weight matrix into two or more smaller matrices. LoRD has been widely
applied in large FM fine-tuning methods like LoRA. LoRD has also shown substantial compres-
sion capabilities with minimal impact on performance, highlighting its potential for large FM com-
pression [119]. To reduce the dimensionality of high-dimensional token embeddings underpinning
large FMs, TensorGPT [276] proposes an approach based on the tensor-train decomposition, where
each token embedding is treated as a matrix product state that can be efficiently computed in a
distributed manner. Through TensorGPT, the embedding layer can be compressed by a factor of
up to 38.40×. LoSparse [152] employs low-rank approximation to compress the coherent and ex-
pressive elements. The method uses iterative training to assess the significance scores of column
neurons for the pruning process, showcasing superior performance compared to traditional iter-
ative pruning techniques. Saha et al. [219] compress matrices through randomized low-rank and
low-precision factorization, achieving compression ratios as aggressive as 1 bit per matrix coor-
dinate while surpassing or maintaining the performance of traditional compression techniques.
ViTALiTy [47] is an algorithm-hardware co-designed framework to enhance the inference effi-
ciency of ViTs. It achieves approximation of the dot-product softmax operation with first-order
Taylor attention, utilizing row-mean centering as the low-rank component to linearize the cost of
attention blocks.

5 Resource-Efficient Systems

Training and serving systems are key to practical large FMs. This section investigates the system
research to enable resource-efficient large FMs, notable in four aspects: (1) distributed training, (2)
hardware-aware optimizations, (3) serving in cloud, and (4) serving in edge. Table 3 summarizes
widely used open source frameworks in this domain.

5.1 Distributed Training

Distributed training systems serve as the foundation for training large FMs, encompassing
pre-training and fine-tuning phases. Pre-training, involving intensive computation and commu-
nication, demands substantial resources compared to other large FM processes. Fine-tuning is
widely used to transform a general-purpose model into a specialized model for particular use cases.
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Considering the large scale and new execution pattern of large FMs, designing resource-efficient
systems for FMs has drawn great attention from the community. We categorize techniques
for optimizing distributed training systems, covering aspects such as resilience, parallelism,
communication, storage, and heterogeneous GPUs. Additionally, MoE has emerged as a trend
in training extremely large models, for which several approaches are tailored. These specialized
methods are detailed at the end of this subsection.

Resilience. The increasing size and duration of training for large FMs have led to a rise in fail-
ures, emphasizing the importance of resilient training [261]. Fault tolerance approaches for large
FMs primarily manifest in four forms. First, Varuna and Gemini [18, 256] facilitate resilient train-
ing by implementing checkpoints to restart training. Varuna [18] is designed for training in com-
modity clusters with low-bandwidth networks, frequent pre-emptions, and user-friendly features.
However, Gemini [256] expedites failure recovery through in-memory checkpoints. Second, Bam-
boo [233] utilizes redundant computations where one node performs computations for both itself
and its neighbors. Bamboo avoids the overhead of recovering but introduces the overhead during
training. Third, activation checkpointing [131, 307], which avoids storing the activation and recom-
putes it when needed, falls between the checkpointing and redundant computation approaches.
The fourth approach involves recovering partial layers, as demonstrated by Oobleck [109]. In the
event of a failure, the affected pipeline can be restored using partial layers from other replicas,
incurring less overhead than employing the entire checkpoint.

Parallelism. Parallelism plays a crucial role in distributed training, especially for large FMs.
Three types of parallelism are commonly employed for training large FMs. Data parallelism in-
volves distributing the data across workers to scale up distributed training. DeepSpeed ZeRO [213]
optimizes memory usage by splitting the model states. Model parallelism partitions the model in
intra-layer paradigm (tensor parallelism [190]) or inter-layer paradigm (pipeline parallelism [134,
198]). Tensor parallelism improves the training speed while leading to more communication.
Pipeline parallelism improves GPU utilization by filling the bubbles. Breadth-first pipeline par-
allelism [134] designs a looping placement and breadth-first schedule to achieve both high GPU
utilization and low cost. PipeFisher [198] assigns extra work to the bubbles for further benefits.
Mobius [64] is designed for fine-tuning with a novel pipeline parallelism scheme and heteroge-
neous memory. FTPipe [59] partitions the model into finer-grained blocks rather than layers for
flexible execution and low resource demand. Sequence parallelism [131, 145] is designed for the
trend of long sequence training where training one sentence exceeds the memory capacity of one
worker. Sequence parallelism divides the long sequence into multiple chunks and puts them on
different workers. In practice, these parallelisms are usually used in a hybrid way. Galvatron [185]
can automatically determine the most efficient hybrid parallelism strategy.

Communication. The large scale and complex parallelism lead to significant communication
overhead. We summarize the optimization of communication into two categories: reducing the
communication time directly and hiding the communication. Some work explores parallelism-
aware communication compression [226] and heterogeneity-aware traffic reduction [307]. Existing
work usually overlaps the communication with computation, by unifying the abstraction of com-
putation and communication [110], decomposing the original communication collective [251], or
designing a novel pipelining schedule [317].

Storage. Large FMs require a significant amount of storage resources, such as GPU memory
for model states, host memory for model analysis, and disk for dataset and checkpoint. Various
approaches have been proposed to alleviate the storage constraints for efficiency. Offloading is a
common way to reduce the stress of GPU memory. ZeRO-Offload [216] offloads data and compu-
tations to CPU to train large models on a single GPU. FlashNeuron [19], however, offloads selec-
tive data to the SSD for higher throughput. Additionally, Behemoth [124] replaces low-capacity,
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high-performance HBM with high-capacity, low-performance NAND flash to enable data-parallel
training for large FMs.

Heterogeneous GPUs. Training on specialized high-performance GPU clusters is impossible
for most people or enterprises. Moreover, heterogeneous GPUs commonly exist even in special-
ized GPU clusters. Therefore, some efforts try to train large FMs on heterogeneous GPUs. Het-
pipe [202] accelerates training with low-performance GPUs and Wave Synchronous Parallel to
synchronize parameters among heterogeneous GPUs. Whale [111] introduces a hardware-aware
load-balancing algorithm to speed up training.

Mixture-of-Experts. MoE is an efficient approach to scaling up DNN models. The goals of
optimizing MoE training systems are mainly efficiency and scalability. Existing work mainly
optimizes the dynamism-related mechanisms, parallelism, and communication in MoE training.
MegaBlocks [74] leverages sparse primitives to handle dynamic routing and load-imbalanced com-
putation. Brainstorm [41] is a framework for dynamic DNNs by abstracting the dynamism and
profile-based optimization. FlexMoE [193] focuses on the dynamic expert management and device
placement problem. Additionally, Tutel [107] designs dynamic adaptive parallelism and pipelin-
ing strategies. SmartMoE [297] optimizes the parallelism strategy for efficient MoE training with
a combination of offline and online mechanisms. Janus [163] changes communication from an
expert-centric paradigm to a data-centric paradigm for faster communication in MoE training.
MoE-Mamba [206] integrates MoE with Mamba [81] to enable selective SSMs, reaching the same
performance as Mamba in 2.35× fewer training steps.

5.2 Hardware-Aware Optimizations

Some hardware-aware methods are also proposed to optimize FM. For instance, EdgeBERT [231]
proposes an in-depth algorithm-hardware co-design for latency-aware energy optimization for
multi-task NLP. Its core is an entropy-based early exit prediction for dynamic DVFS at a sentence
granularity. FlightLLM [296] is an end-to-end LLM inference mapping flow on FPGAs. Its core is
the computation and memory overhead of LLMs can be solved by utilizing FPGA-specific resources
(e.g., DSP48 and heterogeneous memory hierarchy). SpAtten [248] proposes a sparse attention
mechanism with cascade token and head pruning. It designs a novel top-k engine to rank token
and head importance scores with high throughput, and along with other careful optimizations like
progressive quantization. A3 [88] makes a key insight that the attention mechanism is semantically
a content-based search where a large portion of computations ends up not being used. Recognizing
that, it proposes an architecture with algorithmic approximation and hardware specialization.

5.3 Serving on Cloud

FM serving has two main phases: the prefill phase and the decoding phase. The prefill phase often
processes a long sequence of input tokens in parallel, which is compute-intensive and can lead
to potential bottlenecks if resources are not carefully allocated. In contrast, the decoding phase
generates one token at a time, making it more bandwidth-bound [314]. Therefore, a series of opti-
mizations for FM serving systems have been introduced to accelerate this process.

Inference Accelerating. To accelerate the computation in a single accelerator, kernel optimiza-
tion is a common approach. FlashAttention [43] and FlashAttention-2 [42] design for FM training
can be simply used to accelerate the prefill phase. However, due to the unique characteristics of the
decoding phase, Flash-Decoding [45] proposes a specific NVIDIA CUDA kernel to accelerate the
decoding phase. FlashDecoding++ [98] further improves the performance of Flash-Decoding by
optimizing the softmax operation and flat GEMM operation in the decoding phase and provides
additional AMD GPU support. DeepSpeed-Inference [15], ByteTransformer [299], and Google’s
PaLM serving system [209] also optimize GPU/TPU optimizations for small batch size scenarios,
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which is common in FM serving but rare in FM training. When scaling FM inference to numerous
GPUs at a large scale, many works [15, 209] exploit combinations of various parallelism strategies,
such as data parallelism, pipeline parallelism, tensor parallelism, and expert parallelism. These
works efficiently serve FM inference on multiple modern accelerators, such as GPUs/TPUs.

Given the autoregressive nature of FMs, various requests may feature distinct lengths of input
tokens and output tokens. To address this issue, request batching and scheduling constitute an-
other set of methods to enhance the computational efficiency of request processing. Orca [291]
proposes selective batching and iteration-level scheduling to batch requests of different lengths
at the granularity of iterations to increase the maximum batch size. FlexGen [223] proposes a
request scheduling algorithm to mitigate the impact of offloading on the performance of latency-
insensitive FM serving in a single GPU. FastServe [263] proposes an iteration-level preemptive
scheduling and proactive KV cache swapping to mitigate the impact of head-of-line blocking on
the performance of distributed FM serving. SARATHI [13] and DeepSpeed-FastGen [1] split the
computation of the prefill phase into small chunks and schedule these chunks with the decoding
phase to mitigate the impact of the prefill phase on the performance of large FMs serving. Split-
wise [203] splits the prefill phase and the decoding phase onto different machines according to their
different computation and memory requirements. Sarathi-Serve [12] introduces a chunked-prefills
scheduler which splits a prefill request into near equal sized chunks and creates stall-free sched-
ules that adds new requests in a batch without pausing ongoing decodes. dLoRA [264] dynamically
merges/unmerges adapters with the base model and migrating requests/adapters between worker
replicas, significantly improving the serving throughput.

Memory Saving. An FM consumes a large amount of memory during the serving process. To re-
duce the memory consumption of FM serving, many works propose various memory management
techniques. As for FMs’ parameters and activations, DeepSpeed-Inference [15] and FlexGen [223]
offload activations or model parameters to the DRAM or NVMe memories when the GPU memory
is insufficient.

KV cache is another important memory component in FM serving. To reduce the memory con-
sumption of KV cache, vLLM [132] adopts a block-level on-demand memory allocation mechanism,
which only allocates memory to intermediate states when needed. vLLM also proposes a new op-
erator, Paged Attention, to support attention operation when using this memory allocation mech-
anism. S-LoRA [222] extends this idea to Unified Paging to manage multiple LoRA adapters at the
same time. SGLang [313] further exposes prompt programming primitives to users to enable more
complex KV cache management among all requests with the help of RadixAttention.

Emerging Platforms. Typical FM serving systems are usually deployed on data centers
equipped with plenty of homogeneous high-performance servers. Due to the scarcity and cost
of these high-performance servers, there are also some FM serving systems specifically designed
for other deployment platforms. SpotServe [184] tries to serve FMs on spot instances, which are
low-cost but unreliable cloud instances. SpotServe dynamically adjusts its parallelism strategy to
accommodate the impact of spot instance preemption. As for FM serving on heterogeneous GPUs,
HexGen [115] uses an evolutionary algorithm to search for high-performance FM placement on
heterogeneous GPUs.

5.4 Serving on Edge

Large FMs have been widely adopted in many real-world mobile applications, such as search
engines [10], chatbots [282], and intelligent agents [149]. With ever-increasing data privacy
concerns and the stringent response latency requirement, running large FM on mobile devices
locally (i.e., on-device inference) has recently attracted attention from both academia and industry.
While small language models [176, 289] have been developed for on-device deployment, the

ACM Comput. Surv., Vol. 57, No. 5, Article 110. Publication date: January 2025.



110:24 M. Xu et al.

runtime efficiency (decoding speed, memory footprint, energy consumption, etc.) still remains a
key challenge. Thereby, many on-device inference optimization techniques have been introduced.

Edge-Cloud Collaboration. A common strategy to tackle the scarce resources on mobile de-
vices is to speed up the intensive inference with a powerful edge/cloud server collaboration. For
instance, EdgeFM [281] queries and adapts the large FMs to the specific edge models with cus-
tomized knowledge and architectures so that the dynamic edge model can ensure both low latency
and close accuracy to the original large FMs.

On-Device MoE. On-device MoE models are proposed to only execute in routed sparse param-
eters during inference, which can decrease computation (detailed in Section 3.2). EdgeMoe [288]
identifies the problem that experts have to be dynamically loaded into memory during inference.
To tackle this issue, this approach proposes expert-wise bit-width adaptation to reduce the size of
expert parameters with acceptable accuracy loss, saving parameters’ loading time. PC-MoE [128]
is based on a crucial observation that expert activations are subject to temporal locality. Based on
this observation, PC-MoE proposes Parameter Committee, which intelligently maintains a subset
of crucial experts in use to reduce resource consumption.

Memory Optimization. Since large FMs often rely on large parameter sizes and on-device
memory resources are scarce (e.g., 8 GB), inferring large FMs on devices faces the challenge of
“memory wall.” To tackle this issue, LLMCad [272] utilizes speculative decoding [139], which can
offload most workloads to a smaller memory-resident draft model. PowerInfer [227] relies on large
FMs runtime sparsity (i.e., only hot neurons are consistently activated across inputs). To that end,
PowerInfer pre-loads hot-activated neurons onto the GPU for fast access, whereas cold-activated
neurons are computed on the CPU, thus significantly reducing GPU memory demands and CPU-
GPU data transfers.

I/O Optimization. As parameter size increasing speed is larger than edge devices’ memory in-
creasing speed, dynamically loading parameters from disks to memory is avoidable. STI [86] identi-
fies that loading parameters time is highly longer than computation time. To address this problem,
STI proposes dynamically adapting weights bit-width during the loading procedure according to
parameters importance, minimizing loading overhead under maximum inference accuracy. LLM
in a flash [14] solves this problem by fine-grained management of flash storage to reduce the vol-
ume of data transferred from flash to memory as well as reading data in larger, more contiguous
chunks.

Kernel Optimization. Computing resources are also crucial while limiting resources on the
devices. A prior study [304] implements the first 32-bit integer-based edge kernel for ViTs with
post-training integer-only quantization to speed up the inference process. This method also in-
troduces a range-constrained quantization technique for activation and normalization operators
in transformers to tradeoff data range and inference accuracy. Llm.npu [273] offloads most of the
LLM inference computation to a hardware accelerator (NPU) to significantly improve the runtime
efficiency.

6 Conclusion and Future Directions

This survey provided a holistic, systematic overview of recent literature toward resource-efficient
large FMs. We first presented the preliminary background and cost analysis of the popular FMs,
including language, vision, and multimodal. We then dived into the model architecture, algorithm,
and system designs to enable a more resource-efficient large FM lifecycle. In the future, the re-
search of this domain will continue to be (or even more) crucial since the scaling law guarantees a
promising future of more powerful AI with larger and larger models. Such research is also highly
interdisciplinary, involving various CS communities such as machine learning, NLP/CV/Speech,
networking, cloud computing, and edge computing.
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The research opportunities for resource-efficient large FMs are extremely large, as presented
next.

Cloud-Edge Hybrid Deployment. To enable ubiquitous, privacy-preserving, and highly avail-
able general intelligence, many FMs will ultimately sink to near-user devices. Preliminary efforts
have been already conducted to bring LLaMA-7B to smartphones and PCs. The killer applications
include personal assistants/agents [149, 260] and multimodal information retrieval [140], among
others. In the future, at what size and speed the FMs can run on devices will become a key com-
petitive force in the business model of hardware vendors.

Exploiting the Model Sparsity. With the model being larger, the activated ratio of the model
will become smaller for a given task. Recent literature [174] finds that even a densely trained non-
MoE model exhibits runtime activation sparsity, which can be exploited to reduce the inference
time and memory footprint. We believe that exploiting the model and activation sparsity will be
a promising direction toward sustainable model size scaling. More efficient sparse architectures
other than MoE could emerge.

Large FM as a Service. On both clouds and devices, large FMs are unifying the DNN ecosys-
tem [292]. Ultimately, it becomes a universal service to be invoked just as today’s Web and Data-
base. On the one hand, it opens the opportunity for highly hardware-algorithm co-design and
optimizations, and on the other hand, it poses new challenges in system and infrastructure design
for scheduling, load balancing, and security and isolation.

Agent as a Holistic System to Optimize. In the future, FMs, especially LLMs, will be used as
a key building block for establishing agents [149, 260]. Its efficiency shall not be considered as in
a stand-alone LLM service; instead, the algorithm and system designs need to cater to the specific
agent workflow. For example, an agent system might require multiple FMs to cooperate, where
there exists inherent logic dependency. In this process, the design space of selecting the proper
FMs for each task and scheduling them on a given set of hardware resources to maximize the
agent performance is huge.

Practical Privacy-Preserving FM. As the volume of user data uploaded to the cloud for FM
processing continues to increase, the severity of privacy concerns correspondingly escalates. Exist-
ing methods include federated learning,2 homomorphic encryption, and disentanglement learning.
While being theoretically sound, those methods still confront significant performance challenges,
hindering their large-scale in-the-wild deployment. A promising direction involves the develop-
ment of innovative privacy-preserving techniques specifically designed for large FMs, or the re-
finement of existing methods, to effectively balance privacy with performance.
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