
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

FwdLLM: Efficient Federated Finetuning
of Large Language Models with Perturbed Inferences

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang,
Beijing University of Posts and Telecommunications (BUPT)

https://www.usenix.org/conference/atc24/presentation/xu-mengwei

FwdLLM: Efficient Federated Finetuning of Large Language Models
with Perturbed Inferences

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang

Beijing University of Posts and Telecommunications (BUPT)

Abstract
Large Language Models (LLMs) are transforming the land-
scape of mobile intelligence. Federated Learning (FL), a
method to preserve user data privacy, is often employed in
fine-tuning LLMs to downstream mobile tasks, i.e., FedLLM.
A vital challenge of FedLLM is the tension between LLM
complexity and resource constraint of mobile devices.

In response to this challenge, this work introduces FwdLLM,
an innovative FL protocol designed to enhance the FedLLM
efficiency. The key idea of FwdLLM is to employ backpropa-
gation (BP)-free training methods, requiring devices only to
execute “perturbed inferences”. Consequently, FwdLLM deliv-
ers way better memory efficiency and time efficiency (expe-
dited by mobile NPUs and an expanded array of participant
devices). FwdLLM centers around three key designs: (1) it com-
bines BP-free training with parameter-efficient training meth-
ods, an essential way to scale the approach to the LLM era;
(2) it systematically and adaptively allocates computational
loads across devices, striking a careful balance between con-
vergence speed and accuracy; (3) it discriminatively samples
perturbed predictions that are more valuable to model conver-
gence. Comprehensive experiments illustrate FwdLLM’s sig-
nificant advantages over conventional methods, including up
to three orders of magnitude faster convergence and a 14.6×
reduction in memory footprint. Uniquely, FwdLLM paves the
way for federated billion-parameter LLMs such as LLaMA
on COTS mobile devices – a feat previously unattained.

1 Introduction

Large Language Models (LLMs) such as GPTs and LLaMA
have showcased an impressive ability to handle generic ma-
chine learning tasks. As foundational models, pre-trained
LLMs can be fine-tuned for various downstream tasks and
have been applied across a broad range of mobile applica-
tions, including but not limited to question answering, per-
sonal assistance, and data retrieval [38,80,97,100,103]. Early
efforts have been invested to adapt LLMs to mobile devices

while maintaining data privacy during the fine-tuning process.
Often, these efforts employ federated learning, an approach
known as FedLLM [17, 17, 18, 82, 88, 108, 110].

A salient feature of LLMs is their scalability: by incorporat-
ing more parameters, LLMs can continually evolve, achieving
higher accuracy or even emergent abilities [29, 32, 101, 106].
Consequently, contemporary LLMs have grown enormously
in size and are hard to be trained even on a GPU clus-
ter [83, 98], not to mention mobile devices. Recent research
of FedLLM [18, 82, 108, 110] primarily addresses the net-
work issue between devices and cloud aggregator, yet the
convergence is still lengthy and being impractical for develop-
ers. Through pilot experiments (§2.2), we identify three key
obstacles towards practical FedLLM.

• Huge memory footprint. The predominant on-device
training algorithm [19, 89] necessitates extensive memory to
store intermediate results such as activations and gradients.
Although fine-tuning could omit most gradients with layers
frozen, activations continue to demand considerable memory,
often exceeding device capabilities. For example, 3.9 GB is
required for RoBERTa-large. It results in extra I/O time to
swap in/out data [45, 69] and makes the training task a highly
likely victim of mobile OS’s low memory killer [9]; in either
way, the FedLLM convergence is significantly slowed down.

• Incompatible with mobile accelerators. Mobile SoCs
are often furnished with powerful, fast-evolving DNN ac-
celerators (NPUs), e.g., Google Edge TPU and Qualcomm
Hexagon that are up to 30× faster than CPUs. Regrettably,
on-device training is unsupported on nearly all mobile NPUs,
since they are tailored for inference rather than training, and
thus lack the requisite support for training-specific operations
like SELECT_OPS [1] and dynamic gradient updating.

• Limited device scalability. In FL, only dozens of devices
participate in training simtaneously, even when millions of
IoT/smartphone devices are available. For instance, Google’s
deployed FL system samples merely around 1% of training-
ready devices per round [8], because even a small number
of devices can saturate learning performance, meaning addi-
tional devices do not further expedite convergence.

USENIX Association 2024 USENIX Annual Technical Conference 579

This work leverages a crucial observation: all above issues
can be somehow traced to the use of backpropagation-based
(termed BP) training algorithm [44, 92] on devices (details
in §2.2). This prompts an essential question: is it feasible to
replace backpropagation with a more mobile-friendly training
algorithm, thereby reinvigorating the FedLLM protocol?
FwdLLM: training with “perturbed inferences”. We

thereby present FwdLLM, the first-of-its-kind system that en-
ables practical and scalable FedLLM through BP-free training
algorithm. Instead of calculating one exact gradient using BP,
FwdLLM asks each device to perform perturbed inference: ap-
plying a few self-generated small perturbations to the model
weights, and compare how their prediction output deviate
from the ground truth labels with the unmodified model. In-
tuitively, if a perturbation makes the model more accurate
(output closer to labels), the perturbation is likely to direct the
model to global optima. In §3.2, we detail how such intuition
leads to a mathmatical form to obtain a BP-free gradient that
is an unbiased estimator of the true gradient. Such BP-free
training algorithms [13,27,55,74,78] have been researched by
the ML community for decades but seize very few attentions.
Relying on only inferences, the computation on devices is
much more memory efficient and NPU-compatible; more de-
vices also scale to faster convergence to allow more perturbed
inferences simltaneously.

While the idea is intriguing, FwdLLM’s design confronts
three crucial challenges. (i) BP-free methods have only shown
comparable performance with BP on tiny models like LeNet,
as they demand proportionally increased perturbed inferences
with its model size [13,67,74]. (ii) How many perturbed infer-
ences are good enough before proceeding to the next round?
It is a vital factor with strong impact on the training conver-
gence. Using a fixed number perturbed inferences sees up to
3× longer training delay as compared to the final design of
FwdLLM (§3.3). There is no silver-bullet setting that results in
the fastest convergence under each condition. Rather, the op-
timal setting depends on the specific tasks and models; it also
needs to be adapted on the fly even within the same training
session, as the favorable setting drifts over time depending on
the model’s learning progress. (iii) The convergence speed
of FwdLLM hinges on the perturbations generated. Contrary to
most prior BP-free literature, which randomly samples per-
turbations from classic distributions [13, 26, 63], we discover
that this method is often sub-optimal. Our empirical results in
§3.4 shows that most randomly sampled perturbations are of
low value (orthogonal to the true gradient) to the convergence.
FwdLLM addresses above challenges with three key designs.
First, FwdLLM integrates the perturbed inferences with

parameter-efficient fine-tuning (PEFT) methods like
LoRa [36] and Adapter [71]. It is based on a crucial observa-
tion that the training complexity of BP-free methods scales
with its trainable parameters instead of total parameters,
aligning well with PEFTs that necessitate minimal parameters
for fine-tuning. In fact, the larger the LLM, the fewer PEFT

trainable parameters required [30, 36, 54, 71]. While BP-free
training and PEFT are priorly known and have been recently
applied to FL in a few literature [18, 26, 67, 110], we are the
first to identify their significance in FedLLM and investigate
the system implications when they are orchestrated.

Second, FwdLLM employs an automatic and systematic strat-
egy to manage the global perturbation inferences for develop-
ers. Unlike traditional FL protocols [8,50,65] that use a static,
user-defined metric to control the computing loads on devices,
FwdLLM augments the aggregator with an on-the-fly monitor
that controls the timing to aggregate the gradients and proceed
to the next round. Intuitively, as model approaches conver-
gence, BP-free methods need more perturbations to accurately
estimate the convergence direction. FwdLLM leverages a cru-
cial heuristic that the variance across the BP-free gradients
uploaded from different devices monotonically increases as
model converges, which harmoniously paces with the number
of perturbed inferences demanded for fast and stable conver-
gence. Therefore, FwdLLM proposes a variance-controlled pac-
ing mechanism that the perturbed inferences stops only when
the variance observed on aggregator is smaller than a thresh-
old. FwdLLM also judiciously prioritizes different means (by
adjusting participant devices, training data size, and perturba-
tion number) to adapt global-PS to maximize the efficiency.

Third, FwdLLM introduces a discriminative perturbation
sampling method that generates perturbations more likely to
contribute significantly to convergence. Concretely, FwdLLM
asks devices to bypass the computing of low-value perturba-
tions, i.e., those with nearly orthogonal convergence direction
with the true gradients. To estimate the true gradients that are
not known before aggregated on clouds, FwdLLM leverages
the opportunity that the gradients direction changes smoothly
during FL – an observation also exploited in prior FL liter-
ature [52, 90]. Thereby, the server always pre-computes the
cosine similarities between the perturbations generated and
the computed BP-free gradients of the previous round. The
perturbations with small similarity will be filtered out and not
computed by the devices.

We have implemented FwdLLM and evaluated it on 5
typical transformer-based models: ALBERT-base (0.01B),
DistilBERT-base (0.07B), BERT-base (0.1B), RoBERTa-large
(0.3B), and LLaMA (7B) and 4 classic NLP tasks (both
discriminative and generative). The on-device training is
profiled on Google Pixel 7 Pro and Jetson TX2. The re-
sults demonstrate FwdLLM’s impressive performance: com-
pared to full-model fine-tuning, FwdLLM reduces the train-
ing time from 10.9–97.9 hours to 0.2–0.8 hours (up to
217.3× reduction); compared to more competitive baselines
enhanced by different PEFT methods, FwdLLM still delivers
2.0×–93.4× speedup (10.6× on average). FwdLLM also re-
duces the memory footprint by up to 14.6× and 11.5× com-
pared to them, respectively. Through orchestration with quan-
tization (INT4), for the first time FwdLLM enables fine-tuning
a billion-parameter model like LLaMA over COTS smart-

580 2024 USENIX Annual Technical Conference USENIX Association

phones within only 10 minutes. The ablation study also shows
the significance of FwdLLM’s key designs in planning and ma-
nipulating perturbations.

Contributions. We make following contributions.

• We introduce a BP-free federated learning framework
that facilitates practical and efficient federated LLM
fine-tuning. The framework, denoted as FwdLLM, in-
novatively integrates two new techniques that adaptively
schedule the number of perturbations to be examined
and selectively produce them to enhance their utility.

• Through extensive experiments, we demonstrate that
FwdLLM yields substantial improvements over existing
baselines. Moreover, FwdLLM serves to unify the path-
way of on-device inference and training. Rather than
viewing these as two separate research domains that ne-
cessitate distinct methods and optimizations, FwdLLM
enables researchers in mobile AI systems and hardware
to concentrate on optimizing on-device inference. This
focus, in turn, leads to more efficient federated learning
processes. The code of FwdLLM is available at: https:
//github.com/UbiquitousLearning/FwdLLM.

2 Background and Motivations

2.1 Federated Fine-tuning of LLMs
Large language model has been an revolutionary technique
for its superior performance in serving generic, complex, and
few-shot ML tasks. Training LLMs typically includes two
crucial steps: (i) pre-training that endows the models with
generic, rich knowledge of images/languages/etc, which re-
quires large amounts of public training datasets and com-
puting devices; (ii) fine-tuning that adapts the pre-trained
models for various downstream tasks, which relies on domain-
specific, privacy-sensitive data. Towards a privacy-friendly
LLM training pipeline, there is a trend to combine LLM fine-
tuning with federated learning, e.g., FedLLM [18, 20, 108].

We are at very early stage towards practical FedLLM. The
gap between the tight resource constraint of edge devices and
the extensive resource demand of on-device LLM training is
huge, as demonstrated in both prior studies [18, 19, 89, 95]
and the following experiments. Recent attempts incorpo-
rate parameter-efficient fine-tuning techniques (LoRA [36],
adapters [71], and prompt tuning [54]) into FedLLM and see
significant improvements in saving the network traffic be-
tween devices and aggregator. Yet they do not fully address
many other issues such as excessive memory footprint.

2.2 Preliminary Experiments of FedLLM
In this subsection, we reveal three crucial issues faced by
FedLLM through pilot experiments.

Figure 1: Peak memory footprint of different training methods
and inference. Batch size: 8.

Weights Activations Gradients Total
FT-full 354.3M (100%) 1.3 5.1 1.3 7.7
FT-adapter 3.2M (9.0%) 1.3 3.9 0.02 5.2
FT-bitfit 0.3M (0.8%) 1.3 3.8 0.009 5.1
FT-lora 0.8M (2.2%) 1.3 3.8 0.01 5.1
Inference / 1.3 0.2 0 1.5

Algorithms Trainable
Parameters

Memory Footprint (GB)

Table 1: The breakdown of memory footprint. Model:
RoBERTa-large; batch size: 8. “FT”: finetuning. “Activations”
contain the activations for backward-gradient computation
and optimizer states.

• FedLLM is hindered by the memory wall. Figure 1
shows the peak memory usage in training various LLMs with
a relatively small batch size (8). The observed memory ex-
pense is often unaffordable for edge devices, e.g., more than
7.7GBs for RoBERTa-large and 2.5GBs for ALBERT-base,
while the typical mobile devices possess only 4GBs–12GBs
DRAM. More severely, on smartphones, even only a small
portion of that memory could be used for training tasks to not
compromise user experience [18, 43, 49]. In contrast, infer-
ence consumes much less memory (e.g., less than 1GB) as it
does not need to hold the intermediate computing results in
memory as backpropagation does, which linearly scales up
with batch size and sequence length.

PEFTs like adapter and bitfit methods cannot fundamen-
tally reduce memory footprint as illustrated in Figure 1. They
bring only 21.2%-35.2% memory savings across different
models, which is inadequate to fit certain large models like
ROBERTa-large or LLaMA into real mobile devices. We then
break down the memory consumption of ROBERTa-large and
summarize the results in Table 1. It explains why reducing
trainable parameters cannot bring as significant memory sav-
ing: the activations generated during forward pass take up
most of the memory usage, which cannot be eliminated even
if the weights are not to be updated.

• FedLLM’s inability to leverage powerful mobile accel-
erators. Modern mobile devices frequently come equipped
with high-end NN accelerators. As Moore’s Law approaches
its limits, ASIC-based accelerators offer a promising path-
way to sustain the growth in device capability in tandem
with increasing model complexity. Figure 2 summarizes the
speedup achieved by NPUs over CPUs for three popular mo-
bile chip series: Qualcomm Snapdragon (Hexagon), Google
Pixels (Tensor TPU), and MediaTek (Dimensity). The find-

USENIX Association 2024 USENIX Annual Technical Conference 581

https://github.com/UbiquitousLearning/FwdLLM
https://github.com/UbiquitousLearning/FwdLLM

(a) ALBERT (b) MobileBERT

Figure 2: Performance evolvement of mobile NPU. Numbers
are from AI Benchmark [2].

Model Training Time (sec) Inference Time (sec)
CPU GPU NPU CPU GPU NPU

ALBERT 17.5 6.7 1.5 0.3
DistilBERT-base 6.9 3.4 0.8 0.2
BERT-base 14.0 N/A 6.9 0.8 0.3
RoBERTa-large ∗28.1 11.7 2.9 0.8
LLaMA-7B (INT4) N/A 22.1 N/A N/A

Table 2: Per-batch (BS=8) training and inference time on
Google Pixel 7 Pro. Library: llama.cpp for LLaMA and
TFLite for others. “N/A”: not supported. * is emulated in
an infinite memory environment.

ings are compelling: the NPU speedup rate is steadily rising
and reaches nearly 30× on the recent Snapdragon 8+ Gen
1 chip. This underscores the imperative to utilize NPUs for
efficient on-device DNN execution.

Nevertheless, on-device training can hardly benefit from
mobile NPUs. In Table 2, our measurements reveal the degree
to which NPUs can accelerate DNN inference/training on
the Google Pixel 7 Pro. While mobile NPUs significantly
reduce inference latency compared to mobile CPUs and GPUs,
they offer no support for DNN training. The reason behind
this limitation is clear: these NPUs are tailored for inference
tasks and thus lack the requisite support for backpropagation-
specific operators such as BroadcastGradient, ReluGrad,
StridedSliceGrad, and others [37]. Recent work [95] has
enabled DNN training on Snapdragon Hexagon DSP, but this
approach (i) compromises model accuracy due to lower data
precision, and (ii) faces scalability challenges with other more
proprietary NPUs, such as those found in Google Pixels and
Huawei smartphones.

• FedLLM has low device scalability. Backpropagation-
based FL struggles to enhance its convergence speed with
more participant devices. As depicted in Figure 3, involving
merely tens of devices per round leads to the saturation of
convergence speed, regardless of the utilization of PEFT tech-
niques. Escalating the device count to 100 results in only
marginal improvements; for example, it yields just a 1.04×
acceleration to reach an accuracy of 86% (with adapters).

In real-world scenarios, there could be easily more than
millions devices, such as smartphones and IoTs, that are ca-
pable of contributing local data and computing resources.
After filtering out devices in non-optimal conditions, such

(a) Clients (w/ adapter) (b) Clients (w/o adapter)

Figure 3: Backpropagation-based FL has low device scalabil-
ity.

Literature Venue Year Total Devices Devices per Round
Hermes [46] MobiCom 2021 2,414 20 (0.8%)
PyramidFL [48] MobiCom 2022 342,477 50 (0.01%)
FedAdapter [18] MobiCom 2023 1,000 15 (0.15%)
FedBalancer [77] MobiSys 2022 915 100 (10.9%)
Oort [41] OSDI 2021 1,600,000 100 (0.006%)
FedNLP [104] NAACL 2022 100 10 (10%)
C2A [39] ACL 2023 100 25 (25%)
GradMA [61] CVPR 2023 100 50 (50%)
FedScale [40] ICML 2022 1,660,820 100 (0.006%)
FjORD [33] NeurIPS 2021 3,400 10 (0.3%)

Table 3: Prior FL literature (mobile/system/AI) use a small
ratio of devices in experiments. Maximal numbers are selected
if many datasets are used.

as those with low battery or high utilization, the remaining
training-available device number still easily exceeds hundreds.
For instance, in Google’s deployed FL system [8], around
10,000 devices are simultaneously available for local train-
ing. The failure to scale to a larger number of idle devices
seriously constrains the rate at which the model can converge.
As indicated in Table 3, even when millions of devices are
available, the existing literature on FL uniformly adopts the
default experimental setting of using no more than 100 de-
vices. The root cause of this scalability issue can be attributed
to backpropagation-based optimizers [29, 32, 101] and can
hardly be addressed at systems aspect.

3 FwdLLM Design

3.1 Overview

FwdLLM is a cloud-device framework that aims to enable prac-
tical federated fine-tuning of LLMs across mobile devices.
The key idea is to abandon backpropagation-based gradient
descent, but uses “perturbed inference” that poses much less
memory/compute pressure on devices and can be accelerated
by ubiquitous mobile NN accelerators.

Simplified workflow As shown in Figure 4, FwdLLM employs
a similar parameter-server architecture as traditional FedAvg
protocol but mainly differs on the local computation. ❶ Per
global round, the aggregator first sends the latest LLM updates
(only for the trainable weights, denoted as M) and random

582 2024 USENIX Annual Technical Conference USENIX Association

Clients workloads
adaptation

Discriminative
gradient sampling

FwdLLM Clients
Seeds&

Updated model

Model

Forward
gradients

Aggregate

FwdLLM Server
1

2
Dataset

4
Inference

Engine3
5

6

Validate?

Figure 4: FwdLLM workflow.

Model

PEFT
𝑓(𝜃)

𝑓(𝜃 + ℎ ' 𝑣)

𝑣
Gradient

In
pu

t

RAM

Figure 5: FwdLLM is memory-efficient. Dotted block will be
released sequentially after computation.

seeds to each available client. ❷ Each client discriminatively
samples N trainable weights perturbations based on the ran-
dom seeds, and applies the perturbations to M to generate N
perturbed LLMs (denoted as Mi=1..N) (§3.4). A perturbation
is essentially a vector with the same size as trainable param-
eter number that is sampled from a uniform distribution. ❸
The client then performs a forward pass on each Mi as well
as M with local training data, from which it gets a forward
gradient by comparing their output difference (§3.2). ❹ For-
ward gradients are validated by the server (§3.3) to meet the
variance-controlled pace. Finally, ❺ the clients upload the
validated forward gradients to the aggregator, where ❻ the
gradients from different clients are aggregated and applied to
M . The above steps repeat till convergence.
FwdLLM’s advantages by design. (1) FwdLLM is computa-
tionally efficient. For each client, calculating a forward gradi-
ent is equivalent to executing inferences twice (i.e., f (θ+h ·v)
and f (θ)), making its execution on NPU 19.5–27.5× faster
than computing one backward gradient on a CPU, as pre-
viously demonstrated in Table 2. (2) FwdLLM is memory-
efficient, as it does not require storage of the intermediate acti-
vations generated during the forward pass, which contribute to
the majority of the memory footprint, as outlined in §2.2. The
perturbation weights are parameter-efficient (details in §3.2),
and the perturbed LLM can be generated sequentially, with
each being immediately released once its inference is com-
pleted (Figure 5). Thus, the peak memory footprint of FwdLLM
can be approximated as size_o f (M)+2 · trainable_param.
(3) FwdLLM is highly scalable with respect to client numbers.
As more clients compute forward gradients simultaneously,
the aggregated gradient becomes closer to the real gradient,
contributing to faster and more accurate convergence. Fig-
ure 6b illustrates that the continuous addition of perturbations
enables the forward gradients to estimate the true gradient
with greater precision and stability.

Implications on privacy From the cloud perspective, clients
iteratively upload forward gradients, which are unbiased esti-
mations of the true gradients, mirroring traditional FL meth-
ods based on backpropagation. Consequently, FwdLLM can
be seamlessly integrated with common FL privacy enhance-
ments, including differential privacy [12, 25], secure aggrega-
tion [26], and homomorphic encryption [107].
Unique challenges introduced by BP-free training First,
BP-free training is not a panacea for all models. Existing
studies [13, 67, 74] primarily validate its utility for diminu-
tive models (a few million bytes), which are 1–3 orders of
magnitude smaller than standard LLMs that we target. (2)
The quantity of perturbations required to calculate a single
forward gradient plays a pivotal role in determining conver-
gence performance (elaborated in §3.3). However, this is not
trivial to ascertain beforehand and has not been touched in
prior literature [13, 26, 67, 74]. (3) The convergence speed of
BP-free training is hampered by random perturbation genera-
tion [13, 74]. In following subsections, we will present three
novel techniques to tackle those challenges, respectively.

3.2 Parameter-Efficient BP-Free FedLLM

Forward gradient The forward gradient method is selected
as our BP-free algorithm because it is based solely on the
directional derivative, which can be computed both precisely
and efficiently via the forward pass [13]. Formally, to compute
the directional derivatives of deep learning functions, denoted
as f , with respect to a vector v at a point θ, the following
equation can be used [44, 75]:

∇v f (θ) = lim
h→0

f (θ+h · v)− f (θ)
h

, (1)

where v ∈ N(0,1) represents the weight perturbations, and
∇v f (θ) is the directional derivative of f at the model weight
point θ in the direction v [21]. In simpler terms, ∇v f (θ) sig-
nifies the slope of f in the direction of v. The direction of
steepest ascent can be identified using the gradient ∇ f (θ).
Nevertheless, determining the gradient ∇ f (θ) can be compu-
tationally demanding, as it necessitates both a forward pass
and a backward pass [13], which we have empirically vali-
dated in Section 2. As an alternative, we leverage the forward
gradient gv, which is more cost-effective to compute:

gv(θ) := ∇v f (θ)v = (∇ f (θ) · v)v, (2)

where gv(θ) is established as an unbiased estimator of the
gradient ∇ f (θ) [13].

Using Figure 9a as an illustrative example, we demonstrate
the computation of gradients for the function z = 2(x2+y2) at
the point (0.5,0.5). We can sample n direction vectors v from
N(0,1) and compute gv(θ) for each v. By taking the average
of these forward gradients gv(θ), we obtain an estimator for
the true (backward) gradient ∇ f (θ).

USENIX Association 2024 USENIX Annual Technical Conference 583

Forward gradient is not a panacea for all models. Al-
though forward gradients have been proposed in previous
literature [11,13,31,62,67,79], their practical application has
been limited, primarily due to the enormous demands on data
and computation. Specifically, the requirements (i.e., pertur-
bations per batch) grow exponentially with the parameter size.
As shown in Figure 6, with the increase of parameter size,
the generated forward gradients deviate significantly from the
true gradients. Thus, to obtain reliable forward gradients, the
required perturbations per batch increase exponentially with
the parameter size. Prior forward gradient research has largely
been restricted to evaluations on small-scale models such as
LeNet and WideResNet [13, 67, 74].

Parameter-efficient BP-free learning To deal with this issue,
FwdLLM exploits a key observation that the BP-free training
complexity is primarily related to the trainable parameter
size, rather than the total size. This observation is intuitively
consistent with the mathematical foundation expressed as
f (θ|Θ,x), where the pre-trained model weight Θ and input
x remain fixed, with only the PEFT weights θ being tunable.
Fortunately, pre-trained LLMs have accumulated rich generic
knowledge, thus requiring only a small number of new pa-
rameters to adapt to various downstream tasks. Therefore, for
the first time, FwdLLM integrates BP-free training with PEFT
methods.

In general, FwdLLM is compatible with various PEFT meth-
ods [30, 36, 51, 57, 60, 70, 81, 105] as demonstrated in our
extensive offline experiments. We introduce an offline PEFT
profiler designed to automatically identify the most suitable
PEFT method for FwdLLM, using public dataset on clouds. A
critical factor influencing FwdLLM performance is the num-
ber of trainable parameters. Consequently, we develope a
similarity-aware profile, aiming to identify the optimal PEFT
method that maximizes parameter savings while minimizing
performance degradation. Specifically, we train the model
using the original parameters and various PEFT methods for
a single iteration. Subsequently, we compute the similarity
between the forward gradients and the BP gradients. This
similarity is then utilized to gauge the efficacy of each PEFT
method. In general, larger LLMs are conducive to more ag-
gressive PEFT methods, like BitFit [105] and LoRa [36],
which yield fewer trainable parameters.

3.3 Var.-controlled Perturbation Pacing

Key trade-off between accuracy and cost: In the design
of FwdLLM, we identify a crucial trade-off between the rate of
model convergence and the computational cost imposed on
devices. Specifically, evaluating more perturbations leads to a
more accurate forward gradient but also increases the infer-
ence cost. We introduce a new metric, global perturbation size
(global-PS), defined as the total perturbations aggregated
across all clients per iteration. The success of FwdLLM greatly

(a) Effect of model size. (b) Effect of perturbation.

Figure 6: Effectiveness of forward gradients. (a) Increased
model parameters make the generated forward gradient un-
reliable. (b) Adding perturbations could make the forward
gradient computed more similar to gold gradients.

Figure 7: Optimal Global-PS
varies across training.

Figure 8: Gradient Variance
throught training.

depends on choosing an appropriate global-PS, a topic that
has not been previously explored in studies on forward gradi-
ent [13, 26, 74].

Adaptation of the global-PS on the fly: There is no
universal global-PS setting that can optimize both accuracy
and cost across varying scenarios. As illustrated in Figure 7,
the optimal global-PS configuration changes throughout the
training process, with FwdLLM favoring a monotonically in-
creasing global-PS. For example, in the early training stages
of DistilBERT on AGNEWS, the best global-PS is only 3
perturbations per client to reach 80% relative accuracy to con-
vergence, while achieving 99% accuracy requires a global-PS
of 50, leading to a 16.7× higher computation cost.

Systematic pacing strategy based on gradient variance:
Requiring developers to manually control global-PS could
be complex, as configurations vary across different mod-
els and datasets. Instead, FwdLLM offers an automatic and
systematic strategy to manage the global-PS parameter,
based on the observation that the numerical variance across
the forward gradients uploaded by clients increases as the
model approaches convergence. The variance is defined as
D(g) = ∥ 1

2

[
(ḡ1 − ḡ)2 +(ḡ2 − ḡ)2

]
∥, where ḡ1 and ḡ2 denote

the means of the first and second halves of the forward gradi-
ents, respectively, and ḡ denotes the mean of all the forward
gradients. After 1500 training steps, we observed that this vari-
ance escalated from 0.078 to 1.182, marking a 15.2× increase.
Such increased variance may necessitate more perturbations
to accurately estimate the real gradient. FwdLLM simply uses a
predefined variance threshold that must be met before aggre-

584 2024 USENIX Annual Technical Conference USENIX Association

(a) Samples (b) Statistics

Figure 9: Most of the gradients are nearly orthogonal to target
gradients thus contributing little.

gating gradients across devices, with the threshold being the
only hyperparameter to tune. An empirically selected range
of 0.1–0.5 has been observed to perform well across various
models and datasets.

Prioritizing methods to adapt global-PS: The
global-PS can be increased through three methods: (1) in-
volving more devices; (2) having each device test more per-
turbations. FwdLLM first prioritizes adding more devices, as
concurrent computation facilitates fast convergence. Once
device availability reaches its maximum, FwdLLM turns to the
second method, asking clients to test more perturbations, for
two reasons: (i) perturbations can be quickly and infinitely
generated, and (ii) the result of the original LLM (f (x)) can
be reused when calculating the directional derivatives on mul-
tiple perturbations (f (x+ v) and f (x)), thereby reducing the
required forward propagations from 2∗N to N +1.

Validating-computing pipeline: FwdLLM meticulously de-
signs a pacing pipeline to validate incoming gradients. The
primary principle is to ensure uninterrupted local forward
gradient computations. After transmitting the forward gradi-
ents to the cloud aggregator, clients proceed to compute the
forward gradients for the succeeding perturbation. Upon accu-
mulating sufficient forward gradients to surpass the variance
threshold, the aggregator instructs the client to halt forward
gradient computations. It then aggregates the received for-
ward gradients and dispatches the updated model to the client.
This streamlined process guarantees timely reception of up-
to-date pacing information by the server, eliminating futile
waiting times for client feedback. Note that the validation step
on cloud aggregator is lightweight, e.g., less than 10ms in our
experiment setup.

3.4 Discriminative Perturbation Sampling

The convergence speed of FwdLLM primarily hinges on the
perturbations generated before training. Contrary to most
prior forward-gradient literature, which randomly samples
perturbations from classic distributions such as Gaussian func-
tions [13, 26, 63], we discover that this method is often sub-

optimal. FwdLLM instead employs a discriminative approach,
selectively sampling perturbations that are more likely to con-
tribute larger gradients to the model’s convergence.
Minimal contribution from most forward gradients:
Specifically, two randomly generated vectors in high dimen-
sions could be orthogonal [24, 84, 87]. Recall that our for-
ward gradient is calculated via gv(θ) := ∇v f (θ)v, where
∇v f (θ) = ∇ f (θ) · v is the dot product of the gradient vec-
tor ∇ f (θ) and the perturbation vector v. Figure 9b shows our
analysis of 10,000 perturbations generated while training Dis-
tilBERT on AGNEWS. We find that the majority have cosine
similarity with the gradient vector ∇ f (θ) near zero; specif-
ically, over 60% have a similarity less than 0.03, and they
collectively contribute less than 29.6% of the final forward
gradients. These perturbations contribute minimal forward
gradient to model convergence.
Similarity-aware discriminative sampling: We propose a
strategy to manipulate the perturbation generation process,
making it more conducive to convergence. Figure 9a illus-
trates that when perturbation v is near orthogonal to gradient
∇ f (θ), the resulting forward gradients gv(θ) (shallower red)
contribute less. Based on this observation, we can select per-
turbations exhibiting high cosine similarity with the gradient
vector ∇ f (θ). This technique eliminates the need to com-
pute negligible contributions from certain perturbations. Our
methodology leverages the opportunity that the gradients di-
rection changes smoothly during FL – an observation also
exploited in prior FL literature [52, 90]. Therefore, it’s suf-
ficient to compute the cosine similarities only between the
perturbations and the forward gradients from the preceding
round. For practical implementation, perturbation manipula-
tion computations are outsourced to the cloud. The cloud first
generates a set of random seeds, filtering out perturbations
with low cosine similarities to the prior round’s forward gra-
dients. The resultant seeds are then dispatched to clients for
local perturbation generation.

4 Implementation and Setups

FwdLLM prototype We have fully implemented the FwdLLM
prototype atop FedNLP [104], one of the state-of-the-art
frameworks to develop and evaluate FL methods on NLP
tasks. There are two primary ways to implement forward gra-
dients: numerical differentiation and analytical differentiation.
We use the former as it is almost identical to forward inference.
We therefore implement it with functorch library [3]. For var-
ious PEFT methods: adapter is implemented with Adapter-
Hub [71], a library that facilitates the integration of different
pre-trained adapters for downstream tasks; LoRa and BitFit
are implemented by ourselves. The quantized LLaMA train-
ing is based on AutoGPTQ library [4].
Models We evaluate FwdLLM mainly on five popular LLMs, as
shown in Table 4. Four of them are BERT-like models based

USENIX Association 2024 USENIX Annual Technical Conference 585

Models Arch. Params. PEFT Infer. Libs
ALBERT-base [42] Encoder-only 12M BitFit TFLite [5]
DistilBERT-base [76] Encoder-only 66M Adapter TFLite [5]
BERT-base [23] Encoder-only 110M Bitfit TFLite [5]
RoBERTa-large [59] Encoder-only 340M Bitfit TFLite [5]
LLaMA [83] Decoder-only 7B LoRA llama.cpp [6]

Table 4: Tested models using PyTorch on TX2.

on transformer encoders: (1) ALBERT-base (12M) [42]; (2)
DistilBERT-base (66M) [76]; (3) BERT-base (110M) [23];
(4) RoBERT-large (340M) [59]. Those four models are ex-
tensively used in prior FedNLP research [17, 18, 104]. Apart
from that, we also evaluate FwdLLM on the SoTA open-sourced
generative language model (5) LLaMA-7B (INT4) [83]. To
hold the whole LLaMA model in memory, we quantize it to
INT4 format using GPTQ [28]. As far as we know, FwdLLM is
the first attempt to apply federated learning to a billion-size
models. FwdLLM selects different PEFT methods for different
models with its offline profiler presented in §3.2: Adapter [71]
for DistilBERT; LoRA [36] for LLaMA; and BitFit [105] for
others. The pre-trained weights of above models are from
Huggingface [93].

Datasets We experiment with four popular NLP datasets: (1)
AGNEWS [109] is a news classification dataset with 4 classes.
The number of training samples for each class is 30K and test-
ing 1.9K. (2) YAHOO [109] is a topic classification dataset with
10 categories. Each category contains 140K training samples
and 5,000 testing samples. (3) YELP-Polarity (YELP-P) [109]
predicts a polarity label based on restaurant reviews. The
number of each polarity is 280K/19K for training/testing. (4)
SQuAD-v1.1 (SQUAD) [73] is a commonly used version of
stanford question answering dataset. By default, we uniformly
divide the datasets into 10 for Squad, 1,000 clients for AG-
NEWS and YELP-P, 10,000 clients for YAHOO. For non-iid
settings, we follow prior literatures [18,104] to divide datasets
into skewed label distribution.

Hardware As prior FL literature [41, 46, 48, 104], our exper-
iments are carried out in an semi-emulation manner on two
GPU servers each with 8 × NVIDIA A100. The on-device
training time is obtained on two popular edge devices: (1)
Google Pixel 7 Pro (Pixel) is a popular mobile phones that
is equipped with a Google Tensor G2 TPU, a Mali-G710
GPU and a Octa-core CPU. It runs Android 13 OS. We
use TFLite [5] to train the four BERT-variant models and
llamap.cpp [6] to run inference with LLaMA. The inference
and training speed is previously illustrated in Table 2. (2) Jet-
son TX2 (TX2) [7] is a widely used edge board equipped with
a 256-core NVIDIA Pascal GPU and a Dual-Core NVIDIA
Denver 2 64-Bit CPU. We use PyTorch [68] for on-device
inference and training. Note that Jetson TX2 has no NPU and
is not the primary target platform of FwdLLM.

Metrics We mainly report time-to-accuracy metric and on-
device runtime cost (memory, network, energy). The target
convergence accuracy is 0.88 for AGNEWS, 0.65 for YAHOO

and 0.82 for YELP-P, the same as prior work [18, 104, 109]

Baselines We compare FwdLLM to the following baselines:
(1) Full-FT always fine-tunes the whole model [104]. (2)
Adapter tuning (Adapter) introduces a small tunable mod-
ule between transformer layers and freeze other parame-
ters [35,71]. (3) Bias tuning (BitFit) only tunes bias of each
layer in the LLM [105]. (4) FedAdapter is the SoTA FedNLP
fine-tuning framework that incorporates adapter tuning with
layer freezing techniques [104], along with a progressive train-
ing paradigm to identify the optimal adapter configuration
automatically [18]. All baselines use BP-based training; thus,
they are limited to using smartphone CPUs, as previously
discussed in Section 2.2. In contrast, FwdLLM can also utilize
mobile GPUs and NPUs. A recent work [95] ports training to
mobile NPU, yet does not support transformer models.

FL settings Unless otherwise stated, FwdLLM and all base-
lines select 100 clients per round following prior work [18,
33, 46, 104]. FwdLLM and all baselines use the same set of
hyper-parameters as prior work [18,104]: local training epoch
as 1; mini-batch size as 8; learning rate as 0.01; max sequence
length as 64 for AGNEWS and 256 for others. The default FL
aggregating algorithm is FedSGD [65] as later experiments
will show that FedAVG [8] underperforms FedSGD due to
the asymmetric compute/network cost. Network bandwidth is
set to 10Mbps by default as prior literature [17, 18, 104].

5 Evaluation

5.1 Convergence Performance on Sub-billion-
sized Models

We first study the performance of FwdLLM on the four BERT-
like models that have less than 1B parameters and are exten-
sively used in prior FedNLP research [17, 17, 18, 104].
FwdLLM achieves significant improvements with mobile
NPU. Table 5 summarizes the convergence time and Figure 10
illustrates the convergence process under the default setting.
Specifically, we increase the involved client count to 1000 for
some hard datasets and large model, so as to reach a higher
performance. To reach the target accuracy, FwdLLM outper-
forms Full-FT by an significant factor of 132.7×. Compared
with parameter-efficient fine-tuning baseline and the state-of-
the-art federated fine-tuning system FedAdapter [18], FwdLLM
can still beat them non-trivially (9.6× on average). The sig-
nificant boost in performance partly stems from FwdLLM’s
capacity to harness the powerful NPU, accelerating the train-
ing process. Unique to FwdLLM is its dependency solely on
the forward pass, in contrast to other baselines that require the
backward pass — a function not yet compatible with NPUs,
as elaborated in Section 2.2.

Intriguingly, our research reveals that, contrary to prior FL
scenarios [18, 46, 48], FedLLM with PEFT methods favors
FedSGD towards faster convergence compared to FedAVG.

586 2024 USENIX Annual Technical Conference USENIX Association

(a) AGNEWS

(b) YAHOO

(c) YELP-P

Figure 10: Overall Performance of FwdLLM and baselines. Processor: NPU for FwdLLM and CPU for others.

Figure 11: Convergence on heterogeneous hardware environ-
ment Jetson TX2 & Pixel 7P for YELP-P.

As detailed in Table 5, FedSGD using adapter leads to up
to 3.3× faster convergence than FedAVG on the four tested
models. This can be rationalized by understanding the in-
herent design of FedAVG. Primarily devised to address the
communication overhead in federated learning, the benefits
of FedAVG become muted, as PEFT methods have already
significantly mitigated these overheads.
FwdLLM is versatile across different processors and hard-
ware boards. Though designed primarily for NPUs, FwdLLM
showcases commendable performance across multiple proces-
sors within the Google Pixel. On the GPU, it is up to 92.4×

faster than the Full-FT, and it consistently outperforms sev-
eral strong baselines, achieving speedup of 5.6× on average.
Remarkably, only FwdLLM can exploit both the GPU and NPU
in the Google Pixel, while other baselines are confined to the
CPU, as illustrated in Table 2. Table 5 further showcases that,
even on the Google Pixel’s CPU, FwdLLM can still operate
up to 21.6× faster than Full-FT When compared to more
advanced baselines, FwdLLM outperforms 41.6% of them and
matches the remainder. These results suggest that the design
of FwdLLM is not solely dependent on NPUs; it’s equally ef-
fective on other processors.

Consistently, FwdLLM surpasses other baselines regardless
of the device or its underlying processor. As evidenced in
Figure 11, when tested on the heterogeneous hardware envi-
ronment, FwdLLM maintains its lead. It stuck to the straggler
latency. Its convergence time showcases significant improve-
ments, ranging from 12.2 to 3143.7× faster than Full-FT.
Furthermore, it beats strong baselines in most of the cases,
delivering speeds up to 39.1× faster. The advantage stems
from the reality that a forward pass is inherently 3-5× quicker
than a backward pass [13,15]. The numerical gap between for-

USENIX Association 2024 USENIX Annual Technical Conference 587

AGNEWS YAHOO YELP-P AGNEWS YAHOO
Full-FT 3798.6 1076.0 5871.3 721.0 651.4
Adapter 138.2 509.9 948.3 64.6 115.3
Adapter (FedAvg) 1136.8 2147.9 1119.6 100.0 485.7
Bitfit 86.3 350.5 367.0 49.5 134.8
FedAdapter 139.2 303.1 293.2 23.3 59.9
Ours (CPU) 735.6 315.9 271.6 123.9 110.5
Ours (GPU) 127.2 73.0 63.5 32.7 32.5
Ours (NPU) 70.1 30.4 27.0 23.9 18.1

DistilBERT-baseConvergence
Time (mins)

ALBERT-base
YELP-P AGNEWS YAHOO YELP-P AGNEWS YAHOO YELP-P
892.7 1535.2 1090.9 2217.4 3833.6 Err Err
119.6 239.7 311.8 370.8 860.0 132.7 1319.3
141.2 570.4 1718.6 704.6 298.1 1067.0 410.4
116.7 261.4 366.3 307.2 58.9 131.4 196.3
52.5 85.8 176.2 212.7 27.0 45.9 123.1
92.2 551.5 462.7 242.8 194.3 277.3 95.3
42.0 105.1 57.5 37.5 49.1 60.4 24.1
32.7 64.3 49.0 33.2 28.9 30.1 14.1

DistilBERT-base BERT-base RoBERTa-large

Table 5: Performance summary of Figure 10 and its extension to different processors. Device: Google Pixel 7P. Err: failed to
reach target accuracy within 100 hrs.

Figure 12: FwdLLM performance with different #clients.

Figure 13: Non-iid performance for AGNEWS on DistilBERT.

ward and backward pass are highly program dependent, which
will be exaggerated in efficient inference engines [53, 58, 86].
Apart from that, our global cherry-picked forward gradients,
refined through discriminative filtering, help to guide the train-
ing process to reach the target accuracy quickly.
FwdLLM exhibits enhanced scalability in convergence
speed as the number of available training devices increases.
Figure 12 demonstrates that FwdLLM adeptly leverages a grow-
ing number of clients to bolster convergence performance.
With the client count increasing from 1 to 500, FwdLLM’s
convergence duration notably reduces from 563.65 to 9.96
minutes. On the other hand, vanilla FedLLM methods, which
rely on backward passes, fail to showcase a similar trend in
scalability. For these approaches, the convergence duration
plateaus once the client count exceeds 5. This behavior echoes

Convergence
time (mins)

DistilBERT-base BERT-base
Uniform non-IID Uniform non-IID

Adapter 23.4 37.8 92.3 158.2
Ours 9.1 11.2 28.4 51.2

Table 6: Summary of FwdLLM performance under non-iid data
distribution. Target accuracy is set as 0.84.

the findings in §2.2, underscoring that FwdLLM outperforms
backward pass-based FedLLM methods in scalability as more
clients are added.
FwdLLM demonstrates resilience to non-iid data distribu-
tions. We evaluate the performance of FwdLLM under non-iid
data distribution, as presented in Figure 13. Notably, while
the performance of FwdLLM under non-iid slightly lags be-
hind its IID counterpart — witnessing up to a 3.8% accuracy
drop in AGNEWS dataset, it still achieves parity convergence
accuracy with strong baseline methods under non-iid circum-
stances, with up to 337.5% faster. The resilience of FwdLLM
to non-iid data distributions can be attributed to its ability to
engage a vast number of clients, effectively harnessing their
collective knowledge in a single round.

5.2 Convergence Performance on Billion-Sized
Model (LLaMA)

Discriminative task. We further assess FwdLLM using a
billion-sized model, LLaMA-7B, on the AGNEWS dataset
and the Pixel 7 Pro. To accommodate the model on these
devices, we employed the quantization technique GPTQ [28],
which is prevalently utilized with LLMs to minimize pa-
rameter redundancy. During the fine-tuning process, we
adopted low-precision data formats like INT8/INT4 for the
native LLaMa weights, while retaining FP32 for the trainable
LoRa weights. Given that backpropagation-based training ap-
proaches are not feasible for such sizable models on mobile
platforms, we conducted experiments using both centralized
training (leveraging 1x NVIDIA A100) and federated learning
(on smartphones).

With results shown in Table 7, we make following key ob-
servations. (1) For the first time, FwdLLM enables federated
learning of billion-sized LLMs like LLaMA on COTS mobile
devices. Combined with INT4 quantization, it takes only 0.19

588 2024 USENIX Annual Technical Conference USENIX Association

Centralized Training (A100) Federated LearningMethods Mem.
(GB) Acc. Round Time Acc. Round Time

BP, FP16 39.2 89.7 500 0.1 hrs
BP, INT8 32.4 88.6 500 0.06 hrs
BP, INT4 28.5 87.8 500 0.04 hrs
Ours, FP16 15.6 87.0 240 1.5 hrs
Ours, INT8 7.9 86.9 260 0.8 hrs

N/A due to memory
inefficiency on

Pixel 7 Pro (8GB)

Ours (CPU), INT4 0.19 hrs
Ours (NPU∗), INT4

4.0 85.8 130 0.25 hrs 85.8 130
0.07 hrs

Table 7: FwdLLM combined with INT4-based quantization is the only feasible approach in federated learning of LLaMA-7B.
Dataset: AGNEWS; Acc.: accuracy (%). Centralized training and federated learning are conducted on NVIDIA A100 and Pixel 7
Pro, respectively. *: LLaMA currently is not supported by mobile NPU, therefore we emulate its speed based on the speedup of
other BERT-like models.

Instruction input：
Context:
Bethencourt took the title of King of the Canary Islands, as vassal to Henry
III of Castile. In 1418, Jean's nephew Maciot de Bethencourt sold the rights
to the islands to Enrique Pérez de Guzmán, 2nd Count de Niebla.

Question:
Who sold the rights?

Answer:

Llama-7B-original: Jean de Bethencourt sold the rights to the islands to
Enrique Pérez de Guzmán, 2nd Count de Niebla.
Llama-7B-tuned(backward): Maciot de Bethencourt
Llama-7B-tuned(forward): Jean's nephew Maciot de Bethencourt

Ground Ture: Maciot de Bethencourt

Figure 14: A case showing how FwdLLM guides the LLaMA
to follow human instructions.

hours for FwdLLM to achieve the target accuracy running on
mobile CPU, which is comparable to a centralized training
with one NVIDIA A100 GPU. This is mainly due to its ability
to scale out its speed on a thousand devices simtaneously.
If on-device training can be accelerated by NPU, FwdLLM is
even much faster than the centralized training. (2) FwdLLM ex-
hibits a harmonious orchestration with quantization strategies.
Quantizing LLaMA weights to INT8 and INT4 effectively
reduces the training-time memory footprint from 15.6GBs
to 7.9GBs and 4.0GBs. Yet, the accuracy only degrades by
less than 1.2%. This shows the great compatibility of FwdLLM
with existing model compression algorithms.

Generative (instruction-following) task. We also evalu-
ate FwdLLM on the generative task SQUAD. As shown in the
Figure 14, FwdLLM could generate similar results as the cen-
tralized training. Statistically, FwdLLM could reach 83% f1-
score after 312 rounds instruct tuning, which is 55.2% higher
than zero-shot performance. Even compared with centralized
BP-based training, FwdLLM is only 1.9% lower, which do not
affect the generative quality. Note that FwdLLM conducts ex-
periments on the federated setting with only forward pass,
which is private and fast as we depicted in Table 7.

(a) Peak memory footprint

(b) Total energy cost (c) Total network cost

Figure 15: Resource cost of FwdLLM and baselines.

5.3 System Cost

We analyze the resource cost during FedLLM, including the
peak memory footprint, total energy and network (both uplink
and downlink) expenditure on all participant devices. The
experiments are performed with RoBERTa-large and YELP-P
on Pixel 7 Pro. The results are depicted in Figure 15.

Memory footprint As shown in Figure 15a, FwdLLM achieves
up to a 93% reduction in memory usage compared to FT and
a 91.3% decrease relative to the robust PEFT benchmarks.
Notably, only 169MB of memory is required for a single
FwdLLM round, rendering it highly suitable for mobile devices.
This efficiency stems from FwdLLM’s design, which mandates
only the execution of the forward pass, thus requiring storage
primarily for the trainable model parameters and the pertur-
bation weights; both are parameter-efficient as detailed in
§3.1. Moreover, due to FwdLLM’s sole reliance on inference
functions, cutting-edge inference-centric memory optimiza-
tion techniques [53,58,86] can be effortlessly incorporated to

USENIX Association 2024 USENIX Annual Technical Conference 589

Figure 16: Model convergence delay with or without
FwdLLM’s key designs, showing their significance. VPP means
Variance-controlled Perturbation Pacing, and DPS means
Discriminative Perturbation Sampling.

further reduce memory consumption.
Energy and network Compared to Full-FT, FwdLLM is able
to save 96.7% energy consumption and 98.6% network cost
across devices. FwdLLM is still network-efficient compared to
competitive baselines with PEFT enhancements, e.g., 2.1×
less network traffic compared to Adapter approach.The only
expectation is BitFit because it only transmits bias of each pa-
rameter in the network, i.e., only 0.1% of the total parameters.
In the aspects of energy consumption, FwdLLM consumes 2.6×
on average less energy than all the PEFT baselines. The main
reason behind that is FwdLLM only need to compute forward
pass, which is 3-5× quicker than a backward pass [13, 15]
and could be accelerated by NPU processors.

5.4 Significance of key designs

Dissecting system benefits Figure 16 reveals that each de-
sign element plays a pivotal role in enhancing the perfor-
mance of FwdLLM. (1) Vanilla Forward-FL (FwdLLM without
variance-controlled perturbation and discriminative perturba-
tion sampling) dramatically reduces the convergence time,
ranging from 14.13× to 22.45×. This improvement is as-
cribed to FwdLLM’s capability to engage more clients in local
PEFT training, thereby magnifying their contributions during
the training phase. (2) Discriminative perturbation sampling
can augment the convergence rate by 1.63× to 2.88×. This
enhancement is realized by harnessing the full potential of
each perturbation, enabling them to contribute more signif-
icantly to the gradient updates. (3) Variance-controlled per-
turbation pacing further bolsters convergence performance,
with improvements ranging from 1.78× to 2.02×. This can
be attributed to two primary factors: the early elimination
of ineffective perturbations and the precise identification of
optimal perturbations in subsequent phases.
Global-PS selection strategy Figure 17 demonstrates how
our Global-PS planning strategy efficiently determines the
best global-ps to achieve rapid convergence to a high accu-
racy. In comparison with a fixed, small global-ps value of
1, FwdLLM delivers an accuracy boost of 43.6%. And when
pitted against a larger, fixed global-ps value of 50, FwdLLM

Figure 17: Adaptive vs
Fixed. Model:DistilBERT.
Dataset:AGNews

Figure 18: Different sam-
pling ratio. Model:BERT.
Dataset:AGNews

achieves equivalent accuracy of 85% but 2.99× faster. This
enhancement stems from that FwdLLM dynamically adapts
the global-ps value as training progresses. It starts with a
smaller global-ps to rapidly gain basic accuracy and transi-
tions to a larger global-ps to hone in on higher accuracy in
the later stages.

Sensitivity of discriminative sampling Figure 18 illustrates
how varying sampling ratios influence the convergence perfor-
mance. A 20% sampling ratio emerges as the most efficient,
offering the best runtime improvement (2.33×) compared to
not employing any sampling (equivalent to a 100% sampling
ratio). Using a sampling ratio in the range of 10-40% yields
comparable runtime benefits, suggesting that there’s flexibility
in choosing an effective hyperparameter, ensuring robustness
of the sampling method. However, opting for extremely low
sampling ratios is not always beneficial. For instance, a mere
1% sampling ratio hampers the convergence speed, taking
1.42× longer than the optimal 20% ratio. This is due to the
limited gradient update directions, resulting in a decelerated
convergence.

6 Related Work

FedLLM With the recent rise of transformers and its vari-
ants [23, 34, 56, 76, 85], LLMs have achieved great success
in various domians, including CV, NLP, etc. While its suc-
cess is largely attributed to the pre-training paradigm, the
privacy issue of LLMs has been a major concern, e.g., ex-
traction attacks [10, 22, 112]. FedLLM is a promising direc-
tion to releave the privacy tension of LLMs [113]. To tackle
the tight resource constraint on devices, most recent efforts
resort to parameter-efficient fine-tuning (PEFT) techniques
such as Adapter and LoRa [30, 36, 71, 105]. For instance,
FedAdapter [18] addresses the adapter configuration prob-
lem for FedLLM. However, in §2 we show that PEFT-based
FedLLM only mitigates the network bottleneck, but cannot
significantly optimize the memory or speed of on-devce train-
ing. FwdLLM is built atop PEFT but significantly reduces the
device-side overhead and accelerates convergence. A concur-
rent work, MeZO [63], presents a more mathematical study
on how forward gradients can be leveraged to enable more

590 2024 USENIX Annual Technical Conference USENIX Association

resource-efficient LLM finetuning. The techniques and in-
sights obtained in this work could be used to further enhance
FwdLLM.

Backpropagation-free training Backpropagation is the
most widely adopted but not the only way to train neural
networks, such as zero-order optimization proposed in early
80s [11]. As models getting larger, reserachers are realiz-
ing that backpropagation becomes a burden to DNN training
pipeline. Thus, a few new paradigms for backpropagation-
free training are proposed [13, 31, 62, 79]. This work is built
atop forward gradient for being mobile friendly. However,
prior literature [13, 67, 74] of forward gradient still use toy
models (MLP or small CNNs). BBTv2 [79] applys gradient-
free methods to optimize the LLM prompts in a central
cloud. BAFFLE [26] and FedZeN [64] are two concurrent
work to FwdLLM, which combine backpropagation-free train-
ing with FL. However, it is not designed for LLM and lacks
the two key techniques as presented in §3.3 and §3.4 that
make backpropagation-free FL more systematic and efficient.
Another concurrent work FedKSeed [72] aims to enable full-
parameter zeroth-order optimization of FedLLMs; it reduces
the network cost by updating a scalar gradient accumulator
instead of forward gradients vectors. However, it requires
hundreds of seconds to decode the gradients from the scalar
accumulator and excessive local training steps for each client.

FL Optimizations There have been tremendous efforts in
making cross-device FL more efficient, including commu-
nication efficiency [16, 99], model compression/quantiza-
tion [14, 94], client/data sampling [41, 46–48, 66, 91, 96, 111],
and on-device training speedup [89, 95, 102]. However, their
benefits are modest compared to the gap between the LLMs
like LLaMA and the resource constraint of mobile devices.
FwdLLM innovates the FL protocol by abandoning backpropa-
gation and therefore brings much more significant improve-
ments.

7 Conclusions

In this study, we introduce FwdLLM, the pioneering federated
learning framework for LLMs that operates without backprop-
agation. It borrows the wisdom from the forward gradients
method and applies it to FedLLM training, so as to avoid
memory-intensive backpropagation and enable scalable train-
ing of LLMs on mobile devices. To generate forward gradi-
ents more efficiently and precisely, we employ an adaptive
perturbation generator that determines the number of pertur-
bations on the fly. Additionally, we incorporate a discrimina-
tive sampler to selectively screen the generated perturbations.
Comparative analyses reveal that FwdLLM outperforms con-
temporary FedLLM methods in both convergence time and
scalability.

Acknowledgements

This work was supported by National Key R&D Program
of China (No.2021ZD0113001), NSFC (62102045), Beijing
Nova Program (No.Z211100002121118), and China Institute
of IoT (Wuxi). Dongqi Cai is the corresponding author.

References

[1] https://www.tensorflow.org/lite/guide/
ops_select.

[2] https://ai-benchmark.com/ranking.html.

[3] https://pytorch.org/functorch/stable/.

[4] https://github.com/PanQiWei/AutoGPTQ.

[5] https://tensorflow.google.cn/lite.

[6] https://github.com/ggerganov/llama.cpp.

[7] https://developer.nvidia.com/embedded/
jetson-tx2.

[8] Federated learning: Collaborative machine
learning without centralized training data.
https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html,
2017.

[9] Android. Android: Low memory killer dae-
mon. https://source.android.com/docs/core/
perf/lmkd, 2022.

[10] Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović,
and Martin Vechev. Lamp: Extracting text from
gradients with language model priors. Advances
in Neural Information Processing Systems, 35:7641–
7654, 2022.

[11] Andrew G Barto and Michael I Jordan. Gradient fol-
lowing without back-propagation in layered networks.
In 1st Int. Conference Neural Nets, San Diego, vol-
ume 2, 1987.

[12] Priyam Basu, Tiasa Singha Roy, Rakshit Naidu,
Zumrut Muftuoglu, Sahib Singh, and Fatemehsadat
Mireshghallah. Benchmarking differential privacy and
federated learning for bert models. arXiv preprint
arXiv:2106.13973, 2021.

[13] Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme,
Frank Wood, and Philip Torr. Gradients without back-
propagation. arXiv preprint arXiv:2202.08587, 2022.

USENIX Association 2024 USENIX Annual Technical Conference 591

https://www.tensorflow.org/lite/guide/ops_select
https://www.tensorflow.org/lite/guide/ops_select
https://ai-benchmark.com/ranking.html
https://pytorch.org/functorch/stable/
https://github.com/PanQiWei/AutoGPTQ
https://tensorflow.google.cn/lite
https://github.com/ggerganov/llama.cpp
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://source.android.com/docs/core/perf/lmkd
https://source.android.com/docs/core/perf/lmkd

[14] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Animashree Anandkumar. signsgd: Com-
pressed optimisation for non-convex problems. In
International Conference on Machine Learning, pages
560–569. PMLR, 2018.

[15] Éric Blayo, Marc Bocquet, Emmanuel Cosme, and
Leticia F Cugliandolo. Advanced data assimilation
for geosciences: Lecture notes of the LES Houches
School of Physics: Special issue, June 2012. OUP Ox-
ford, 2014.

[16] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe
Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan
McMahan, et al. Towards federated learning at scale:
System design. Proceedings of Machine Learning and
Systems, 1:374–388, 2019.

[17] Dongqi Cai, Shangguang Wang, Yaozong Wu, Felix Xi-
aozhu Lin, and Mengwei Xu. Federated few-shot learn-
ing for mobile nlp. In Proceedings of the 29th Annual
International Conference on Mobile Computing and
Networking, pages 1–17, 2023.

[18] Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xi-
aozhu Lin, and Mengwei Xu. Efficient federated learn-
ing for modern nlp. In Proceedings of the 29th Annual
International Conference on Mobile Computing and
Networking, pages 1–16, 2023.

[19] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han.
Tinytl: Reduce activations, not trainable parameters
for efficient on-device learning. arXiv preprint
arXiv:2007.11622, 2020.

[20] Chaochao Chen, Xiaohua Feng, Jun Zhou, Jianwei Yin,
and Xiaolin Zheng. Federated large language model:
A position paper. arXiv preprint arXiv:2307.08925,
2023.

[21] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon
Ong. Mathematics for machine learning. Cambridge
University Press, 2020.

[22] Jieren Deng, Yijue Wang, Ji Li, Chenghong Wang,
Chao Shang, Hang Liu, Sanguthevar Rajasekaran, and
Caiwen Ding. Tag: Gradient attack on transformer-
based language models. In The 2021 Conference on
Empirical Methods in Natural Language Processing,
2021.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[24] David Donoho and Jared Tanner. Observed universal-
ity of phase transitions in high-dimensional geometry,
with implications for modern data analysis and signal
processing. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, 367(1906):4273–4293, 2009.

[25] Cynthia Dwork. Differential privacy: A survey of
results. In International conference on theory and
applications of models of computation, pages 1–19.
Springer, 2008.

[26] Haozhe Feng, Tianyu Pang, Chao Du, Wei Chen,
Shuicheng Yan, and Min Lin. Does federated learn-
ing really need backpropagation? arXiv preprint
arXiv:2301.12195, 2023.

[27] Abraham D Flaxman, Adam Tauman Kalai, and
H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradi-
ent. arXiv preprint cs/0408007, 2004.

[28] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. Gptq: Accurate post-training quanti-
zation for generative pre-trained transformers. arXiv
preprint arXiv:2210.17323, 2022.

[29] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[30] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified
view of parameter-efficient transfer learning. In ICML,
2022.

[31] Geoffrey Hinton. The forward-forward algorithm:
Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

[32] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train
longer, generalize better: closing the generalization gap
in large batch training of neural networks. Advances
in neural information processing systems, 30, 2017.

[33] Samuel Horvath, Stefanos Laskaridis, Mario Almeida,
Ilias Leontiadis, Stylianos Venieris, and Nicholas Lane.
Fjord: Fair and accurate federated learning under het-
erogeneous targets with ordered dropout. Advances
in Neural Information Processing Systems, 34:12876–
12889, 2021.

[34] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. Dynabert: Dynamic bert with adap-
tive width and depth. Advances in Neural Information
Processing Systems, 33:9782–9793, 2020.

592 2024 USENIX Annual Technical Conference USENIX Association

[35] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-
efficient transfer learning for nlp. In International
Conference on Machine Learning, pages 2790–2799.
PMLR, 2019.

[36] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language
models. In International Conference on Learning
Representations, 2021.

[37] Joo Seong Jeong, Jingyu Lee, Donghyun Kim, Chang-
min Jeon, Changjin Jeong, Youngki Lee, and Byung-
Gon Chun. Band: coordinated multi-dnn inference on
heterogeneous mobile processors. In Proceedings of
the 20th Annual International Conference on Mobile
Systems, Applications and Services, pages 235–247,
2022.

[38] Liuyi Jin, Tian Liu, Amran Haroon, Radu Stoleru,
Michael Middleton, Ziwei Zhu, and Theodora Chas-
pari. Emsassist: An end-to-end mobile voice as-
sistant at the edge for emergency medical services.
In Proceedings of the 21st Annual International
Conference on Mobile Systems, Applications and
Services, pages 275–288, 2023.

[39] Yeachan Kim, Junho Kim, Wing-Lam Mok, Jun-
Hyung Park, and SangKeun Lee. Client-customized
adaptation for parameter-efficient federated learning.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1159–1172, 2023.

[40] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu,
Xiangfeng Zhu, Harsha Madhyastha, and Mosharaf
Chowdhury. Fedscale: Benchmarking model and sys-
tem performance of federated learning at scale. In
International Conference on Machine Learning, pages
11814–11827. PMLR, 2022.

[41] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and
Mosharaf Chowdhury. Oort: Informed participant se-
lection for scalable federated learning. arXiv preprint
arXiv:2010.06081, 2020.

[42] Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut. Al-
bert: A lite bert for self-supervised learning of language
representations. International Conference on Learning
Representations, 2020.

[43] Niel Lebeck, Arvind Krishnamurthy, Henry M Levy,
and Irene Zhang. End the senseless killing: Improv-
ing memory management for mobile operating sys-
tems. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 873–887, 2020.

[44] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436–444, 2015.

[45] Seulki Lee and Shahriar Nirjon. Fast and scalable
in-memory deep multitask learning via neural weight
virtualization. In Proceedings of the 18th International
Conference on Mobile Systems, Applications, and
Services, pages 175–190, 2020.

[46] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai
Li, and Yiran Chen. Hermes: an efficient fed-
erated learning framework for heterogeneous mo-
bile clients. In Proceedings of the 27th Annual
International Conference on Mobile Computing and
Networking, pages 420–437, 2021.

[47] Anran Li, Lan Zhang, Juntao Tan, Yaxuan Qin,
Junhao Wang, and Xiang-Yang Li. Sample-level
data selection for federated learning. In IEEE
INFOCOM 2021-IEEE Conference on Computer
Communications, pages 1–10. IEEE, 2021.

[48] Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao.
Pyramidfl: A fine-grained client selection framework
for efficient federated learning. In Proceedings of
the 28th Annual International Conference on Mobile
Computing And Networking, pages 158–171, 2022.

[49] Cong Li, Jia Bao, and Haitao Wang. Optimizing low
memory killers for mobile devices using reinforce-
ment learning. In 2017 13th International Wireless
Communications and Mobile Computing Conference
(IWCMC), pages 2169–2174. IEEE, 2017.

[50] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings
of Machine learning and systems, 2:429–450, 2020.

[51] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
pages 4582–4597, 2021.

[52] Xingyu Li, Zhe Qu, Bo Tang, and Zhuo Lu. Strag-
glers are not disaster: A hybrid federated learning
algorithm with delayed gradients. arXiv preprint
arXiv:2102.06329, 2021.

[53] Xiaobo Liang, Juntao Li, Lijun Wu, Ziqiang Cao, and
Min Zhang. Dynamic and efficient inference for text
generation via bert family. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2883–
2897, 2023.

USENIX Association 2024 USENIX Annual Technical Conference 593

[54] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023.

[55] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan
Zhang, Alfred O Hero III, and Pramod K Varshney. A
primer on zeroth-order optimization in signal process-
ing and machine learning: Principals, recent advances,
and applications. IEEE Signal Processing Magazine,
37(5):43–54, 2020.

[56] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. Fastbert: a self-distilling
bert with adaptive inference time. arXiv preprint
arXiv:2004.02178, 2020.

[57] Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. P-tuning v2: Prompt tuning
can be comparable to fine-tuning universally across
scales and tasks. arXiv preprint arXiv:2110.07602,
2021.

[58] Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing
Yang, Han Hu, and Yixuan Yuan. Efficientvit: Memory
efficient vision transformer with cascaded group at-
tention. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
14420–14430, 2023.

[59] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A ro-
bustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[60] Robert Logan IV, Ivana Balažević, Eric Wallace, Fabio
Petroni, Sameer Singh, and Sebastian Riedel. Cut-
ting down on prompts and parameters: Simple few-
shot learning with language models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 2824–2835, 2022.

[61] Kangyang Luo, Xiang Li, Yunshi Lan, and Ming Gao.
Gradma: A gradient-memory-based accelerated fed-
erated learning with alleviated catastrophic forget-
ting. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
3708–3717, 2023.

[62] Wan-Duo Kurt Ma, JP Lewis, and W Bastiaan Kleijn.
The hsic bottleneck: Deep learning without back-
propagation. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 5085–5092,
2020.

[63] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora.
Fine-tuning language models with just forward passes.
Advances in Neural Information Processing Systems,
36:53038–53075, 2023.

[64] Alessio Maritan, Subhrakanti Dey, and Luca Schenato.
Fedzen: Towards superlinear zeroth-order federated
learning via incremental hessian estimation, 2023.

[65] H Brendan McMahan, Eider Moore, Daniel Ramage,
and Blaise Agüera y Arcas. Federated learning of
deep networks using model averaging. arXiv preprint
arXiv:1602.05629, 2:2, 2016.

[66] Takayuki Nishio and Ryo Yonetani. Client selec-
tion for federated learning with heterogeneous re-
sources in mobile edge. In ICC 2019-2019 IEEE
international conference on communications (ICC),
pages 1–7. IEEE, 2019.

[67] Seonghwan Park, Dahun Shin, Jinseok Chung, and
Namhoon Lee. Fedfwd: Federated learning without
backpropagation. In Federated Learning and Analytics
in Practice: Algorithms, Systems, Applications, and
Opportunities, 2023.

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-
performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

[69] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Ca-
puchin: Tensor-based gpu memory management for
deep learning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 891–905, 2020.

[70] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:
Non-destructive task composition for transfer learning.
In EACL, 2021.

[71] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth,
Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A
framework for adapting transformers. arXiv preprint
arXiv:2007.07779, 2020.

[72] Zhen Qin, Daoyuan Chen, Bingchen Qian, Bolin Ding,
Yaliang Li, and Shuiguang Deng. Federated full-
parameter tuning of billion-sized language models with
communication cost under 18 kilobytes. arXiv preprint
arXiv:2312.06353, 2023.

594 2024 USENIX Annual Technical Conference USENIX Association

[73] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[74] Mengye Ren, Simon Kornblith, Renjie Liao, and Geof-
frey Hinton. Scaling forward gradient with local losses.
arXiv preprint arXiv:2210.03310, 2022.

[75] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning internal representations by error
propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[76] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

[77] Jaemin Shin, Yuanchun Li, Yunxin Liu, and Sung-
Ju Lee. Fedbalancer: data and pace control for ef-
ficient federated learning on heterogeneous clients.
In Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and
Services, pages 436–449, 2022.

[78] Charles M Stein. Estimation of the mean of a multi-
variate normal distribution. The annals of Statistics,
pages 1135–1151, 1981.

[79] Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,
Xuan-Jing Huang, and Xipeng Qiu. Bbtv2: towards
a gradient-free future with large language models.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 3916–
3930, 2022.

[80] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. Mobilebert: a compact
task-agnostic bert for resource-limited devices. arXiv
preprint arXiv:2004.02984, 2020.

[81] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst:
Ladder side-tuning for parameter and memory efficient
transfer learning, 2022.

[82] Yuanyishu Tian, Yao Wan, Lingjuan Lyu, Dezhong
Yao, Hai Jin, and Lichao Sun. Fedbert: When federated
learning meets pre-training. ACM Trans. Intell. Syst.
Technol., 13(4), aug 2022.

[83] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971,
2023.

[84] Joel A Tropp. Improved analysis of the subsampled ran-
domized hadamard transform. Advances in Adaptive
Data Analysis, 3(01n02):115–126, 2011.

[85] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems,
30, 2017.

[86] Sairam Sri Vatsavai, Venkata Sai Praneeth Karempudi,
and Ishan Thakkar. An optical xnor-bitcount based
accelerator for efficient inference of binary neural net-
works. In 2023 24th International Symposium on
Quality Electronic Design (ISQED), pages 1–8. IEEE,
2023.

[87] Roman Vershynin. High-dimensional probability: An
introduction with applications in data science, vol-
ume 47. Cambridge university press, 2018.

[88] Boxin Wang, Yibo Jacky Zhang, Yuan Cao, Bo Li,
H Brendan McMahan, Sewoong Oh, Zheng Xu, and
Manzil Zaheer. Can public large language models help
private cross-device federated learning? arXiv preprint
arXiv:2305.12132, 2023.

[89] Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong,
Jinliang Yuan, Xin Jin, Gang Huang, Yunxin Liu,
and Xuanzhe Liu. Melon: Breaking the memory
wall for resource-efficient on-device machine learn-
ing. In Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and
Services, pages 450–463, 2022.

[90] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis,
Kin K Leung, Christian Makaya, Ting He, and Kevin
Chan. Adaptive federated learning in resource con-
strained edge computing systems. IEEE journal on
selected areas in communications, 37(6):1205–1221,
2019.

[91] Su Wang, Mengyuan Lee, Seyyedali Hosseinalipour,
Roberto Morabito, Mung Chiang, and Christopher G
Brinton. Device sampling for heterogeneous feder-
ated learning: Theory, algorithms, and implementa-
tion. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications, pages 1–10. IEEE, 2021.

[92] Paul J Werbos. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE,
78(10):1550–1560, 1990.

[93] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. Huggingface’s transformers: State-of-

USENIX Association 2024 USENIX Annual Technical Conference 595

the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

[94] Jiaxiang Wu, Weidong Huang, Junzhou Huang, and
Tong Zhang. Error compensated quantized sgd and its
applications to large-scale distributed optimization. In
International Conference on Machine Learning, pages
5325–5333. PMLR, 2018.

[95] Daliang Xu, Mengwei Xu, Qipeng Wang, Shangguang
Wang, Yun Ma, Kang Huang, Gang Huang, Xin Jin, and
Xuanzhe Liu. Mandheling: mixed-precision on-device
dnn training with dsp offloading. In Proceedings of
the 28th Annual International Conference on Mobile
Computing And Networking, pages 214–227, 2022.

[96] Jie Xu and Heqiang Wang. Client selection and band-
width allocation in wireless federated learning net-
works: A long-term perspective. IEEE Transactions on
Wireless Communications, 20(2):1188–1200, 2020.

[97] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang,
and Xuanzhe Liu. Deeptype: On-device deep learning
for input personalization service with minimal privacy
concern. IMWUT, 2(4):1–26, 2018.

[98] Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi,
Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao Zhao,
Chen Yang, Shihe Wang, et al. A survey of resource-
efficient llm and multimodal foundation models. arXiv
preprint arXiv:2401.08092, 2024.

[99] Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhen-
peng Chen, Kaigui Bian, Yunxin Liu, and Xuanzhe
Liu. Characterizing impacts of heterogeneity in fed-
erated learning upon large-scale smartphone data. In
Proceedings of the Web Conference 2021, pages 935–
946, 2021.

[100] Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xu-
anzhe Liu. Llm as a system service on mobile devices.
arXiv preprint arXiv:2403.11805, 2024.

[101] Yang You, Yuhui Wang, Huan Zhang, Zhao Zhang,
James Demmel, and Cho-Jui Hsieh. The limit of the
batch size. arXiv preprint arXiv:2006.08517, 2020.

[102] Jinliang Yuan, Shangguang Wang, Hongyu Li, Daliang
Xu, Yuanchun Li, Mengwei Xu, and Xuanzhe Liu.
Towards energy-efficient federated learning via int8-
based training on mobile dsps. In Proceedings of
the ACM on Web Conference 2024, pages 2786–2794,
2024.

[103] Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang,
Xin Yuan, Zeling Zhang, Xiang Li, Dingge Zhang,
Hanzi Mei, Xianqing Jia, et al. Mobile foundation
model as firmware. In Proceedings of the 30th Annual

International Conference on Mobile Computing and
Networking, pages 279–295, 2024.

[104] Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin
Wang, Yufen Huang, Christophe Dupuy, Rahul Gupta,
Mahdi Soltanolkotabi, Xiang Ren, and Salman Aves-
timehr. Fednlp: Benchmarking federated learn-
ing methods for natural language processing tasks.
Findings of NAACL, 2022.

[105] Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv
preprint arXiv:2106.10199, 2021.

[106] Pai Zeng, Zhenyu Ning, Jieru Zhao, Weihao Cui, Meng-
wei Xu, Liwei Guo, Xusheng Chen, and Yizhou Shan.
The cap principle for llm serving. arXiv preprint
arXiv:2405.11299, 2024.

[107] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang,
Feng Yan, and Yang Liu. Batchcrypt: Efficient ho-
momorphic encryption for cross-silo federated learn-
ing. In 2020 USENIX annual technical conference
(USENIX ATC 20), pages 493–506, 2020.

[108] Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Guoyin Wang, and Yiran Chen. To-
wards building the federated gpt: Federated instruction
tuning. arXiv preprint arXiv:2305.05644, 2023.

[109] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-
level convolutional networks for text classification.
Advances in neural information processing systems,
28, 2015.

[110] Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li,
and Gongshen Liu. Fedprompt: Communication-
efficient and privacy-preserving prompt tuning in
federated learning. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[111] Yuxi Zhao and Xiaowen Gong. Quality-aware
distributed computation and user selection
for cost-effective federated learning. In IEEE
INFOCOM 2021-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS),
pages 1–6. IEEE, 2021.

[112] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leak-
age from gradients. Advances in neural information
processing systems, 32, 2019.

[113] Weiming Zhuang, Chen Chen, and Lingjuan Lyu.
When foundation model meets federated learning: Mo-
tivations, challenges, and future directions. arXiv
preprint arXiv:2306.15546, 2023.

596 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivations
	Federated Fine-tuning of LLMs
	Preliminary Experiments of FedLLM

	FwdLLM Design
	Overview
	Parameter-Efficient BP-Free FedLLM
	Var.-controlled Perturbation Pacing
	Discriminative Perturbation Sampling

	Implementation and Setups
	Evaluation
	Convergence Performance on Sub-billion-sized Models
	Convergence Performance on Billion-Sized Model (LLaMA)
	System Cost
	Significance of key designs

	Related Work
	Conclusions

